These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 22020649)

  • 1. ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus.
    Boutte CC; Henry JT; Crosson S
    J Bacteriol; 2012 Jan; 194(1):28-35. PubMed ID: 22020649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus.
    Lesley JA; Shapiro L
    J Bacteriol; 2008 Oct; 190(20):6867-80. PubMed ID: 18723629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus.
    Gonzalez D; Collier J
    J Bacteriol; 2014 Jul; 196(14):2514-25. PubMed ID: 24794566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate starvation decouples cell differentiation from DNA replication control in the dimorphic bacterium Caulobacter crescentus.
    Hallgren J; Koonce K; Felletti M; Mortier J; Turco E; Jonas K
    PLoS Genet; 2023 Nov; 19(11):e1010882. PubMed ID: 38011258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein sequences and cellular factors required for polar localization of a histidine kinase in Caulobacter crescentus.
    Sciochetti SA; Lane T; Ohta N; Newton A
    J Bacteriol; 2002 Nov; 184(21):6037-49. PubMed ID: 12374838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergence of alarmone and cell cycle signaling from trans-encoded sensory domains.
    Sanselicio S; Viollier PH
    mBio; 2015 Oct; 6(5):e01415-15. PubMed ID: 26489861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CtrA response regulator essential for Caulobacter crescentus cell-cycle progression requires a bipartite degradation signal for temporally controlled proteolysis.
    Ryan KR; Judd EM; Shapiro L
    J Mol Biol; 2002 Nov; 324(3):443-55. PubMed ID: 12445780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus.
    Hottes AK; Shapiro L; McAdams HH
    Mol Microbiol; 2005 Dec; 58(5):1340-53. PubMed ID: 16313620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CtrA response regulator binding to the Caulobacter chromosome replication origin is required during nutrient and antibiotic stress as well as during cell cycle progression.
    Bastedo DP; Marczynski GT
    Mol Microbiol; 2009 Apr; 72(1):139-54. PubMed ID: 19220749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (p)ppGpp modulates cell size and the initiation of DNA replication in Caulobacter crescentus in response to a block in lipid biosynthesis.
    Stott KV; Wood SM; Blair JA; Nguyen BT; Herrera A; Mora YG; Cuajungco MP; Murray SR
    Microbiology (Reading); 2015 Mar; 161(Pt 3):553-64. PubMed ID: 25573769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment.
    Boutte CC; Crosson S
    Mol Microbiol; 2011 May; 80(3):695-714. PubMed ID: 21338423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of chromosomal replication in Caulobacter crescentus.
    Collier J
    Plasmid; 2012 Mar; 67(2):76-87. PubMed ID: 22227374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli.
    Kuroda A; Murphy H; Cashel M; Kornberg A
    J Biol Chem; 1997 Aug; 272(34):21240-3. PubMed ID: 9261133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell cycle progression in Caulobacter requires a nucleoid-associated protein with high AT sequence recognition.
    Ricci DP; Melfi MD; Lasker K; Dill DL; McAdams HH; Shapiro L
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):E5952-E5961. PubMed ID: 27647925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control.
    Jenal U
    FEMS Microbiol Rev; 2000 Apr; 24(2):177-91. PubMed ID: 10717313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global regulation of gene expression and cell differentiation in Caulobacter crescentus in response to nutrient availability.
    England JC; Perchuk BS; Laub MT; Gober JW
    J Bacteriol; 2010 Feb; 192(3):819-33. PubMed ID: 19948804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory response to carbon starvation in Caulobacter crescentus.
    Britos L; Abeliuk E; Taverner T; Lipton M; McAdams H; Shapiro L
    PLoS One; 2011 Apr; 6(4):e18179. PubMed ID: 21494595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polar localization of the CckA histidine kinase and cell cycle periodicity of the essential master regulator CtrA in Caulobacter crescentus.
    Angelastro PS; Sliusarenko O; Jacobs-Wagner C
    J Bacteriol; 2010 Jan; 192(2):539-52. PubMed ID: 19897656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter crescentus.
    Radhakrishnan SK; Thanbichler M; Viollier PH
    Genes Dev; 2008 Jan; 22(2):212-25. PubMed ID: 18198338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle regulation in Caulobacter: location, location, location.
    Goley ED; Iniesta AA; Shapiro L
    J Cell Sci; 2007 Oct; 120(Pt 20):3501-7. PubMed ID: 17928306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.