BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 22021091)

  • 1. Fluorescence detection of intron lariat RNA with reduction-triggered fluorescent probes.
    Furukawa K; Abe H; Tamura Y; Yoshimoto R; Yoshida M; Tsuneda S; Ito Y
    Angew Chem Int Ed Engl; 2011 Dec; 50(50):12020-3. PubMed ID: 22021091
    [No Abstract]   [Full Text] [Related]  

  • 2. Detecting RNA/DNA hybridization using double-labeled donor probes with enhanced fluorescence resonance energy transfer signals.
    Okamura Y; Watanabe Y
    Methods Mol Biol; 2006; 335():43-56. PubMed ID: 16785619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-fluorescent RNA probes with an extremely large stokes shift.
    Kobori A; Ueda T; Sanada Y; Yamayoshi A; Murakami A
    Biosci Biotechnol Biochem; 2013; 77(5):1117-9. PubMed ID: 23649243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron.
    Dème E; Nolte A; Jacquier A
    Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent PNA probes as hybridization labels for biological RNA.
    Robertson KL; Yu L; Armitage BA; Lopez AJ; Peteanu LA
    Biochemistry; 2006 May; 45(19):6066-74. PubMed ID: 16681379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of pre-mRNA splicing in vitro by an RNA-templated fluorogenic reaction.
    Tamura Y; Furukawa K; Yoshimoto R; Kawai Y; Yoshida M; Tsuneda S; Ito Y; Abe H
    Bioorg Med Chem Lett; 2012 Dec; 22(23):7248-51. PubMed ID: 23072867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emission control by binary energy transfer processes on oligouridine.
    Ikeda S; Kubota T; Wang DO; Yanagisawa H; Yuki M; Okamoto A
    Org Biomol Chem; 2011 Oct; 9(19):6598-603. PubMed ID: 21837340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic investigation of a FRET molecular beacon containing two fluorophores for probing DNA/RNA sequences.
    Jockusch S; Martí AA; Turro NJ; Li Z; Li X; Ju J; Stevens N; Akins DL
    Photochem Photobiol Sci; 2006 May; 5(5):493-8. PubMed ID: 16685327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence resonance energy transfer between an anionic conjugated polymer and a dye-labeled lysozyme aptamer for specific lysozyme detection.
    Wang J; Liu B
    Chem Commun (Camb); 2009 May; (17):2284-6. PubMed ID: 19377660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-noise stemless PNA beacons for sensitive DNA and RNA detection.
    Socher E; Bethge L; Knoll A; Jungnick N; Herrmann A; Seitz O
    Angew Chem Int Ed Engl; 2008; 47(49):9555-9. PubMed ID: 18949813
    [No Abstract]   [Full Text] [Related]  

  • 11. Donor-donor energy-migration measurements of dimeric DsbC labeled at its N-terminal amines with fluorescent probes: a study of protein unfolding.
    Duan X; Zhao Z; Ye J; Ma H; Xia A; Yang G; Wang CC
    Angew Chem Int Ed Engl; 2004 Aug; 43(32):4216-9. PubMed ID: 15307091
    [No Abstract]   [Full Text] [Related]  

  • 12. A Förster-resonance-energy transfer-based method for fluorescence detection of the protein redox state.
    Kuznetsova S; Zauner G; Schmauder R; Mayboroda OA; Deelder AM; Aartsma TJ; Canters GW
    Anal Biochem; 2006 Mar; 350(1):52-60. PubMed ID: 16430854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescently labeling synthetic RNAs.
    Greenfeld M; Herschlag D
    Methods Enzymol; 2013; 530():281-97. PubMed ID: 24034327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent Branched RNAs for High-Throughput Analysis of Dbr1 Enzyme Kinetics and Inhibition.
    Katolik A; Clark NE; Tago N; Montemayor EJ; Hart PJ; Damha MJ
    ACS Chem Biol; 2017 Mar; 12(3):622-627. PubMed ID: 28055181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-templated chemistry in cells: discrimination of Escherichia, Shigella and Salmonella bacterial strains with a new two-color FRET strategy.
    Silverman AP; Baron EJ; Kool ET
    Chembiochem; 2006 Dec; 7(12):1890-4. PubMed ID: 17031884
    [No Abstract]   [Full Text] [Related]  

  • 16. A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral.
    Takakusa H; Kikuchi K; Urano Y; Kojima H; Nagano T
    Chemistry; 2003 Apr; 9(7):1479-85. PubMed ID: 12658644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of hydrolysis and hairpin probes in real-time PCR.
    McChlery SM; Clarke SC
    Mol Biotechnol; 2003 Nov; 25(3):267-74. PubMed ID: 14668539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn(2+) using a rhodamine spirolactam as a trigger.
    Han ZX; Zhang XB; Li Z; Gong YJ; Wu XY; Jin Z; He CM; Jian LX; Zhang J; Shen GL; Yu RQ
    Anal Chem; 2010 Apr; 82(8):3108-13. PubMed ID: 20334436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Template-mediated synthesis of lariat RNA and DNA.
    Carriero S; Damha MJ
    J Org Chem; 2003 Oct; 68(22):8328-38. PubMed ID: 14575454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent resonant energy transfer: correlated fluctuations of donor and acceptor.
    Yu ZG
    J Chem Phys; 2007 Dec; 127(22):221101. PubMed ID: 18081378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.