BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22021100)

  • 1. EphB signaling regulates target innervation in the developing and deafferented auditory brainstem.
    Nakamura PA; Hsieh CY; Cramer KS
    Dev Neurobiol; 2012 Sep; 72(9):1243-55. PubMed ID: 22021100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ephrin-B reverse signaling is required for formation of strictly contralateral auditory brainstem pathways.
    Hsieh CY; Nakamura PA; Luk SO; Miko IJ; Henkemeyer M; Cramer KS
    J Neurosci; 2010 Jul; 30(29):9840-9. PubMed ID: 20660266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EphB2 signaling regulates lesion-induced axon sprouting but not critical period length in the postnatal auditory brainstem.
    Nakamura PA; Cramer KS
    Neural Dev; 2013 Feb; 8():2. PubMed ID: 23379484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ephrin-A2 and ephrin-A5 guide contralateral targeting but not topographic mapping of ventral cochlear nucleus axons.
    Abdul-Latif ML; Salazar JA; Marshak S; Dinh ML; Cramer KS
    Neural Dev; 2015 Dec; 10():27. PubMed ID: 26666565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and maturation of the calyx of Held.
    Nakamura PA; Cramer KS
    Hear Res; 2011 Jun; 276(1-2):70-8. PubMed ID: 21093567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deafferentation induces novel axonal projections in the auditory brainstem after hearing onset.
    Hsieh CY; Cramer KS
    J Comp Neurol; 2006 Aug; 497(4):589-99. PubMed ID: 16739167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of EphA4 enhances deafferentation-induced ipsilateral sprouting in auditory brainstem projections.
    Hsieh CY; Hong CT; Cramer KS
    J Comp Neurol; 2007 Oct; 504(5):508-18. PubMed ID: 17702003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatostatin and leu-enkephalin in the rat auditory brainstem during fetal and postnatal development.
    Kungel M; Friauf E
    Anat Embryol (Berl); 1995 May; 191(5):425-43. PubMed ID: 7625613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of glial cells in the auditory brainstem: normal development and effects of unilateral lesion.
    Dinh ML; Koppel SJ; Korn MJ; Cramer KS
    Neuroscience; 2014 Oct; 278():237-52. PubMed ID: 25158674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased temporal precision of auditory signaling in Kcna1-null mice: an electrophysiological study in vivo.
    Kopp-Scheinpflug C; Fuchs K; Lippe WR; Tempel BL; Rübsamen R
    J Neurosci; 2003 Oct; 23(27):9199-207. PubMed ID: 14534254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic Inhibition of Medial Olivocochlear Efferent Neurons by Neurons of the Medial Nucleus of the Trapezoid Body.
    Torres Cadenas L; Fischl MJ; Weisz CJC
    J Neurosci; 2020 Jan; 40(3):509-525. PubMed ID: 31719165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of BMP Signaling for the Formation of Auditory Brainstem Nuclei and Large Auditory Relay Synapses.
    Kronander E; Clark C; Schneggenburger R
    Dev Neurobiol; 2019 Feb; 79(2):155-174. PubMed ID: 30548566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of human auditory brainstem circuits by calcium-binding protein immunohistochemistry.
    Kulesza RJ
    Neuroscience; 2014 Jan; 258():318-31. PubMed ID: 24291726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus.
    Howell DM; Morgan WJ; Jarjour AA; Spirou GA; Berrebi AS; Kennedy TE; Mathers PH
    J Comp Neurol; 2007 Oct; 504(5):533-49. PubMed ID: 17701984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deficiency of neural recognition molecule NB-2 affects the development of glutamatergic auditory pathways from the ventral cochlear nucleus to the superior olivary complex in mouse.
    Toyoshima M; Sakurai K; Shimazaki K; Takeda Y; Shimoda Y; Watanabe K
    Dev Biol; 2009 Dec; 336(2):192-200. PubMed ID: 19818338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KCNQ5 reaches synaptic endings in the auditory brainstem at hearing onset and targeting maintenance is activity-dependent.
    Garcia-Pino E; Caminos E; Juiz JM
    J Comp Neurol; 2010 Apr; 518(8):1301-14. PubMed ID: 20151361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal expression of the serotonin transporter in auditory brainstem neurons.
    Thompson AM; Lauder JM
    Dev Neurosci; 2005; 27(1):1-12. PubMed ID: 15886479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea.
    Kitzes LM; Kageyama GH; Semple MN; Kil J
    J Comp Neurol; 1995 Mar; 353(3):341-63. PubMed ID: 7751435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maturation of auditory brainstem projections and calyces in the congenitally deaf (dn/dn) mouse.
    Youssoufian M; Couchman K; Shivdasani MN; Paolini AG; Walmsley B
    J Comp Neurol; 2008 Jan; 506(3):442-51. PubMed ID: 18041784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential localization of neural cell recognition molecule NB-2 in developing glutamatergic neurons in the rat auditory brainstem.
    Toyoshima M; Sakurai K; Shimazaki K; Takeda Y; Nakamoto M; Serizawa S; Shimoda Y; Watanabe K
    J Comp Neurol; 2009 Apr; 513(4):349-62. PubMed ID: 19177518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.