BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 22021221)

  • 41. Investigation of structural transition of regenerated silk fibroin aqueous solution by Rheo-NMR spectroscopy.
    Ohgo K; Bagusat F; Asakura T; Scheler U
    J Am Chem Soc; 2008 Mar; 130(12):4182-6. PubMed ID: 18307348
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel silk fibroin nanoparticles incorporated silk fibroin hydrogel for inhibition of cancer stem cells and tumor growth.
    Wu P; Liu Q; Wang Q; Qian H; Yu L; Liu B; Li R
    Int J Nanomedicine; 2018; 13():5405-5418. PubMed ID: 30271137
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrothermal production and characterization of protein and amino acids from silk waste.
    Lamoolphak W; De-Eknamkul W; Shotipruk A
    Bioresour Technol; 2008 Nov; 99(16):7678-85. PubMed ID: 18321700
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions.
    Freddi G; Anghileri A; Sampaio S; Buchert J; Monti P; Taddei P
    J Biotechnol; 2006 Sep; 125(2):281-94. PubMed ID: 16621091
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation of silk fibroin carriers for controlled release.
    Liu Q; Liu H; Fan Y
    Microsc Res Tech; 2017 Mar; 80(3):312-320. PubMed ID: 26638113
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of the properties of silk fibroin films from the non-mulberry silkworm Samia cynthia ricini for biomaterial design.
    Mai-ngam K; Boonkitpattarakul K; Jaipaew J; Mai-ngam B
    J Biomater Sci Polym Ed; 2011; 22(15):2001-22. PubMed ID: 21029516
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Possible implications of serine and tyrosine residues and intermolecular interactions on the appearance of silk I structure of Bombyx mori silk fibroin-derived synthetic peptides: high-resolution 13C cross-polarization/magic-angle spinning NMR study.
    Asakura T; Ohgo K; Ishida T; Taddei P; Monti P; Kishore R
    Biomacromolecules; 2005; 6(1):468-74. PubMed ID: 15638554
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calcium alginate beads embedded in silk fibroin as 3D dual drug releasing scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 Oct; 30(28):5170-7. PubMed ID: 19552952
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Silk nanospheres and microspheres from silk/pva blend films for drug delivery.
    Wang X; Yucel T; Lu Q; Hu X; Kaplan DL
    Biomaterials; 2010 Feb; 31(6):1025-35. PubMed ID: 19945157
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Insoluble and flexible silk films containing glycerol.
    Lu S; Wang X; Lu Q; Zhang X; Kluge JA; Uppal N; Omenetto F; Kaplan DL
    Biomacromolecules; 2010 Jan; 11(1):143-50. PubMed ID: 19919091
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR.
    Zhou P; Xie X; Knight DP; Zong XH; Deng F; Yao WH
    Biochemistry; 2004 Sep; 43(35):11302-11. PubMed ID: 15366940
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Silk fibroin rods for sustained delivery of breast cancer therapeutics.
    Yucel T; Lovett ML; Giangregorio R; Coonahan E; Kaplan DL
    Biomaterials; 2014 Oct; 35(30):8613-20. PubMed ID: 25009069
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation on in vitro biocompatibility of silk fibroin-based biomaterials with primarily cultured hippocampal neurons.
    Tang X; Ding F; Yang Y; Hu N; Wu H; Gu X
    J Biomed Mater Res A; 2009 Oct; 91(1):166-74. PubMed ID: 18780373
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Silk Fibroin Degradation Related to Rheological and Mechanical Properties.
    Partlow BP; Tabatabai AP; Leisk GG; Cebe P; Blair DL; Kaplan DL
    Macromol Biosci; 2016 May; 16(5):666-75. PubMed ID: 26756449
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface Modification and Characterisation of Silk Fibroin Fabric Produced by the Layer-by-Layer Self-Assembly of Multilayer Alginate/Regenerated Silk Fibroin.
    Shen G; Hu X; Guan G; Wang L
    PLoS One; 2015; 10(4):e0124811. PubMed ID: 25919690
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel method for dissolution and stabilization of non-mulberry silk gland protein fibroin using anionic surfactant sodium dodecyl sulfate.
    Mandal BB; Kundu SC
    Biotechnol Bioeng; 2008 Apr; 99(6):1482-9. PubMed ID: 17969177
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Controlling silk fibroin particle features for drug delivery.
    Lammel AS; Hu X; Park SH; Kaplan DL; Scheibel TR
    Biomaterials; 2010 Jun; 31(16):4583-91. PubMed ID: 20219241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation and characterization of ethanol-treated silk fibroin dense membranes for biomaterials application using waste silk fibers as raw material.
    Nogueira GM; Rodas AC; Leite CA; Giles C; Higa OZ; Polakiewicz B; Beppu MM
    Bioresour Technol; 2010 Nov; 101(21):8446-51. PubMed ID: 20598877
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regeneration of the femoral epicondyle on calcium-binding silk scaffolds developed using transgenic silk fibroin produced by transgenic silkworm.
    Nagano A; Tanioka Y; Sakurai N; Sezutsu H; Kuboyama N; Kiba H; Tanimoto Y; Nishiyama N; Asakura T
    Acta Biomater; 2011 Mar; 7(3):1192-201. PubMed ID: 21055485
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Silk fibroin layer-by-layer microcapsules for localized gene delivery.
    Li L; Puhl S; Meinel L; Germershaus O
    Biomaterials; 2014 Sep; 35(27):7929-39. PubMed ID: 24930849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.