These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 22021421)
1. Silicon-induced changes in antifungal phenolic acids, flavonoids, and key phenylpropanoid pathway genes during the interaction between miniature roses and the biotrophic pathogen Podosphaera pannosa. Shetty R; Fretté X; Jensen B; Shetty NP; Jensen JD; Jørgensen HJ; Newman MA; Christensen LP Plant Physiol; 2011 Dec; 157(4):2194-205. PubMed ID: 22021421 [TBL] [Abstract][Full Text] [Related]
2. Interaction of roses with a biotrophic and a hemibiotrophic leaf pathogen leads to differences in defense transcriptome activation. Neu E; Domes HS; Menz I; Kaufmann H; Linde M; Debener T Plant Mol Biol; 2019 Mar; 99(4-5):299-316. PubMed ID: 30706286 [TBL] [Abstract][Full Text] [Related]
3. Site-specific, silicon-induced structural and molecular defence responses against powdery mildew infection in roses. Shetty R; Jensen B; Shelton D; Jørgensen K; Pedas P; Jørgensen HJL Pest Manag Sci; 2021 Oct; 77(10):4545-4554. PubMed ID: 34075680 [TBL] [Abstract][Full Text] [Related]
4. Morphological and Molecular Analyses of the Interaction between Bao Y; Zhang X; Sun X; Bao M; Wang Y Genes (Basel); 2022 Jun; 13(6):. PubMed ID: 35741765 [TBL] [Abstract][Full Text] [Related]
5. Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Hao Y; Fang P; Ma C; White JC; Xiang Z; Wang H; Zhang Z; Rui Y; Xing B Environ Res; 2019 Mar; 170():1-6. PubMed ID: 30554052 [TBL] [Abstract][Full Text] [Related]
6. Isolation and identification of eight races of powdery mildew of roses (Podosphaera pannosa) (Wallr.: Fr.) de Bary and the genetic analysis of the resistance gene Rpp1. Linde M; Debener T Theor Appl Genet; 2003 Jul; 107(2):256-62. PubMed ID: 12845441 [TBL] [Abstract][Full Text] [Related]
7. Changes in specific activities of peroxidase, chitinase and phenylalanine ammonia-lyase and phenolic content in cucumber leaves inoculated with Podosphaera fusca, the causal agent of powdery mildew. Zavareh AH; Tehrani AS; Mohammadi M Commun Agric Appl Biol Sci; 2004; 69(4):545-53. PubMed ID: 15756838 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of antioxidant activities, metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice (Zizania latifolia). Chu C; Du Y; Yu X; Shi J; Yuan X; Liu X; Liu Y; Zhang H; Zhang Z; Yan N Food Chem; 2020 Jul; 318():126483. PubMed ID: 32126468 [TBL] [Abstract][Full Text] [Related]
9. Silicon induces ROS scavengers, hormone signalling, antifungal metabolites, and silicon deposition against brown stripe disease in sugarcane. Chen J; Li Y; Zeng Z; Zhao X; Zhang Y; Li X; Chen J; Shen W Physiol Plant; 2024; 176(3):e14313. PubMed ID: 38666351 [TBL] [Abstract][Full Text] [Related]
10. Analysis of allelic variants of RhMLO genes in rose and functional studies on susceptibility to powdery mildew related to clade V homologs. Fang P; Arens P; Liu X; Zhang X; Lakwani D; Foucher F; Clotault J; Geike J; Kaufmann H; Debener T; Bai Y; Zhang Z; Smulders MJM Theor Appl Genet; 2021 Aug; 134(8):2495-2515. PubMed ID: 33934211 [TBL] [Abstract][Full Text] [Related]
11. Regulation of polyphenols accumulation by combined overexpression/silencing key enzymes of phenylpropanoid pathway. Chang J; Luo J; He G Acta Biochim Biophys Sin (Shanghai); 2009 Feb; 41(2):123-30. PubMed ID: 19204829 [TBL] [Abstract][Full Text] [Related]
12. Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon-powdery mildew (Podosphaera fusca) interactions. Romero D; Eugenia Rivera M; Cazorla FM; Codina JC; Fernández-Ortuño D; Torés JA; Pérez-García A; de Vicente A J Plant Physiol; 2008 Dec; 165(18):1895-905. PubMed ID: 18585824 [TBL] [Abstract][Full Text] [Related]
13. First Report of Powdery Mildew on Tan L; Song Q; Shi Y; Wang J; Weng Q; Liu Q Plant Dis; 2022 Jul; ():. PubMed ID: 35815964 [No Abstract] [Full Text] [Related]
14. Aconitate and methyl aconitate are modulated by silicon in powdery mildew-infected wheat plants. Rémus-Borel W; Menzies JG; Bélanger RR J Plant Physiol; 2009 Sep; 166(13):1413-22. PubMed ID: 19345440 [TBL] [Abstract][Full Text] [Related]
15. Silicon-Induced Systemic Defense Responses in Perennial Ryegrass Against Infection by Magnaporthe oryzae. Rahman A; Wallis CM; Uddin W Phytopathology; 2015 Jun; 105(6):748-57. PubMed ID: 25738553 [TBL] [Abstract][Full Text] [Related]
16. Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content in Arabidopsis leaves in response to microbial products. Ali MB; McNear DH BMC Plant Biol; 2014 Apr; 14():84. PubMed ID: 24690446 [TBL] [Abstract][Full Text] [Related]
17. The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. Fauteux F; Chain F; Belzile F; Menzies JG; Bélanger RR Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17554-9. PubMed ID: 17082308 [TBL] [Abstract][Full Text] [Related]
18. Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Cai K; Gao D; Luo S; Zeng R; Yang J; Zhu X Physiol Plant; 2008 Oct; 134(2):324-33. PubMed ID: 18513376 [TBL] [Abstract][Full Text] [Related]
19. Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Swarbrick PJ; Schulze-Lefert P; Scholes JD Plant Cell Environ; 2006 Jun; 29(6):1061-76. PubMed ID: 17080933 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome Analysis of Apple Leaves in Response to Powdery Mildew ( Tian X; Zhang L; Feng S; Zhao Z; Wang X; Gao H Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31083412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]