These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 22022270)
1. The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile. Carter GP; Douce GR; Govind R; Howarth PM; Mackin KE; Spencer J; Buckley AM; Antunes A; Kotsanas D; Jenkin GA; Dupuy B; Rood JI; Lyras D PLoS Pathog; 2011 Oct; 7(10):e1002317. PubMed ID: 22022270 [TBL] [Abstract][Full Text] [Related]
2. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. Merrigan M; Venugopal A; Mallozzi M; Roxas B; Viswanathan VK; Johnson S; Gerding DN; Vedantam G J Bacteriol; 2010 Oct; 192(19):4904-11. PubMed ID: 20675495 [TBL] [Abstract][Full Text] [Related]
3. Mathematical modelling reveals properties of TcdC required for it to be a negative regulator of toxin production in Clostridium difficile. Jabbari S; Cartman ST; King JR J Math Biol; 2015 Mar; 70(4):773-804. PubMed ID: 24687436 [TBL] [Abstract][Full Text] [Related]
4. Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. Spigaglia P; Mastrantonio P J Clin Microbiol; 2002 Sep; 40(9):3470-5. PubMed ID: 12202595 [TBL] [Abstract][Full Text] [Related]
5. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Warny M; Pepin J; Fang A; Killgore G; Thompson A; Brazier J; Frost E; McDonald LC Lancet; 2005 Sep 24-30; 366(9491):1079-84. PubMed ID: 16182895 [TBL] [Abstract][Full Text] [Related]
6. Toxin B is essential for virulence of Clostridium difficile. Lyras D; O'Connor JR; Howarth PM; Sambol SP; Carter GP; Phumoonna T; Poon R; Adams V; Vedantam G; Johnson S; Gerding DN; Rood JI Nature; 2009 Apr; 458(7242):1176-9. PubMed ID: 19252482 [TBL] [Abstract][Full Text] [Related]
7. Lack of association between clinical outcome of Clostridium difficile infections, strain type, and virulence-associated phenotypes. Sirard S; Valiquette L; Fortier LC J Clin Microbiol; 2011 Dec; 49(12):4040-6. PubMed ID: 21956985 [TBL] [Abstract][Full Text] [Related]
8. Analysis of TcdB Proteins within the Hypervirulent Clade 2 Reveals an Impact of RhoA Glucosylation on Clostridium difficile Proinflammatory Activities. Quesada-Gómez C; López-Ureña D; Chumbler N; Kroh HK; Castro-Peña C; Rodríguez C; Orozco-Aguilar J; González-Camacho S; Rucavado A; Guzmán-Verri C; Lawley TD; Lacy DB; Chaves-Olarte E Infect Immun; 2016 Jan; 84(3):856-65. PubMed ID: 26755157 [TBL] [Abstract][Full Text] [Related]
9. Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Cartman ST; Kelly ML; Heeg D; Heap JT; Minton NP Appl Environ Microbiol; 2012 Jul; 78(13):4683-90. PubMed ID: 22522680 [TBL] [Abstract][Full Text] [Related]
11. Clostridium difficile infection in an Iranian hospital. Jalali M; Khorvash F; Warriner K; Weese JS BMC Res Notes; 2012 Mar; 5():159. PubMed ID: 22436392 [TBL] [Abstract][Full Text] [Related]
12. Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile. Mackin KE; Carter GP; Howarth P; Rood JI; Lyras D PLoS One; 2013; 8(11):e79666. PubMed ID: 24236153 [TBL] [Abstract][Full Text] [Related]
13. The emergence of 'hypervirulence' in Clostridium difficile. Cartman ST; Heap JT; Kuehne SA; Cockayne A; Minton NP Int J Med Microbiol; 2010 Aug; 300(6):387-95. PubMed ID: 20547099 [TBL] [Abstract][Full Text] [Related]
14. Epidemic ribotypes of Clostridium (now Clostridioides) difficile are likely to be more virulent than non-epidemic ribotypes in animal models. Vitucci JC; Pulse M; Tabor-Simecka L; Simecka J BMC Microbiol; 2020 Feb; 20(1):27. PubMed ID: 32024477 [TBL] [Abstract][Full Text] [Related]
15. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. Kuehne SA; Collery MM; Kelly ML; Cartman ST; Cockayne A; Minton NP J Infect Dis; 2014 Jan; 209(1):83-6. PubMed ID: 23935202 [TBL] [Abstract][Full Text] [Related]
16. Truncation in the tcdC region of the Clostridium difficile PathLoc of clinical isolates does not predict increased biological activity of Toxin B or Toxin A. Murray R; Boyd D; Levett PN; Mulvey MR; Alfa MJ BMC Infect Dis; 2009 Jun; 9():103. PubMed ID: 19558711 [TBL] [Abstract][Full Text] [Related]
17. Emergence of Clostridium difficile ribotype 027 in Korea. Kim H; Lee Y; Moon HW; Lim CS; Lee K; Chong Y Korean J Lab Med; 2011 Jul; 31(3):191-6. PubMed ID: 21779194 [TBL] [Abstract][Full Text] [Related]
18. Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens. Sekulovic O; Meessen-Pinard M; Fortier LC J Bacteriol; 2011 Jun; 193(11):2726-34. PubMed ID: 21441508 [TBL] [Abstract][Full Text] [Related]
19. The role of flagella in Clostridium difficile pathogenicity. Stevenson E; Minton NP; Kuehne SA Trends Microbiol; 2015 May; 23(5):275-82. PubMed ID: 25659185 [TBL] [Abstract][Full Text] [Related]
20. Variations in virulence and molecular biology among emerging strains of Clostridium difficile. Hunt JJ; Ballard JD Microbiol Mol Biol Rev; 2013 Dec; 77(4):567-81. PubMed ID: 24296572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]