BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 2202258)

  • 1. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.
    Rafii F; Franklin W; Cerniglia CE
    Appl Environ Microbiol; 1990 Jul; 56(7):2146-51. PubMed ID: 2202258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract.
    Rafii F; Cerniglia CE
    Environ Health Perspect; 1995 Jun; 103 Suppl 5(Suppl 5):17-9. PubMed ID: 8565901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunological homology among azoreductases from Clostridium and Eubacterium strains isolated from human intestinal microflora.
    Rafii F; Smith DB; Benson RW; Cerniglia CE
    J Basic Microbiol; 1992; 32(2):99-105. PubMed ID: 1512704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification, Isolation and characterization of a novel azoreductase from Clostridium perfringens.
    Morrison JM; Wright CM; John GH
    Anaerobe; 2012 Apr; 18(2):229-34. PubMed ID: 22182443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and identification of intestinal steroid-desulfating bacteria from rats and humans.
    Van Eldere J; Robben J; De Pauw G; Merckx R; Eyssen H
    Appl Environ Microbiol; 1988 Aug; 54(8):2112-7. PubMed ID: 3178214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the azoreductase and nitroreductase from Clostridium perfringens.
    Rafii F; Cerniglia CE
    Appl Environ Microbiol; 1993 Jun; 59(6):1731-4. PubMed ID: 8328797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of four microbial enzymes in Clostridia and Bacteroides isolated from human feces.
    Nakamura J; Kubota Y; Miyaoka M; Saitoh T; Mizuno F; Benno Y
    Microbiol Immunol; 2002; 46(7):487-90. PubMed ID: 12222935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-classical azoreductase secretion in Clostridium perfringens in response to sulfonated azo dye exposure.
    Morrison JM; John GH
    Anaerobe; 2015 Aug; 34():34-43. PubMed ID: 25881497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract.
    Rafil F; Franklin W; Heflich RH; Cerniglia CE
    Appl Environ Microbiol; 1991 Apr; 57(4):962-8. PubMed ID: 2059053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and physiology of Clostridium perfringens wild-type and ΔazoC knockout: an azo dye exposure study.
    Morrison JM; John GH
    Microbiology (Reading); 2016 Feb; 162(2):330-338. PubMed ID: 26566621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The non-enzymatic reduction of azo dyes by flavin and nicotinamide cofactors under varying conditions.
    Morrison JM; John GH
    Anaerobe; 2013 Oct; 23():87-96. PubMed ID: 23891960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicological significance of azo dye metabolism by human intestinal microbiota.
    Feng J; Cerniglia CE; Chen H
    Front Biosci (Elite Ed); 2012 Jan; 4(2):568-86. PubMed ID: 22201895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and expression in Escherichia coli of an azoreductase gene from Clostridium perfringens and comparison with azoreductase genes from other bacteria.
    Rafii F; Coleman T
    J Basic Microbiol; 1999; 39(1):29-35. PubMed ID: 10071864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and stability of an azoreductase with an FAD cofactor from the strict anaerobe Clostridium perfringens.
    Morrison J; Dai S; Ren J; Taylor A; Wilkerson M; John G; Xie A
    Protein Pept Lett; 2014 Jun; 21(6):523-34. PubMed ID: 24779771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract.
    Rafii F; Hall JD; Cerniglia CE
    Food Chem Toxicol; 1997 Sep; 35(9):897-901. PubMed ID: 9409630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing the degrading-possibility of methyl red by two azoreductases of Anoxybacillus sp. PDR2 based on molecular docking.
    Zhang S; Feng L; Han Y; Xu Z; Xu L; An X; Zhang Q
    Chemosphere; 2024 Mar; 351():141173. PubMed ID: 38232904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of NAD (P) H azoreductase from alkaliphilic red bacteria Aquiflexum sp. DL6.
    Misal SA; Lingojwar DP; Gawai KR
    Protein J; 2013 Dec; 32(8):601-8. PubMed ID: 24186471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of anaerobic bacteria from vented blood-culture bottles.
    Martin WJ; Wilhelm PA; Bruckner D
    Rev Infect Dis; 1984; 6 Suppl 1():S59-61. PubMed ID: 6372038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp. strain IFN4.
    Imran M; Arshad M; Negm F; Khalid A; Shaharoona B; Hussain S; Mahmood Nadeem S; Crowley DE
    Ecotoxicol Environ Saf; 2016 Feb; 124():42-49. PubMed ID: 26454074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of the flavin-free oxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases.
    Bürger S; Stolz A
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2067-76. PubMed ID: 20508929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.