These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22022580)

  • 1. Irrelevant features of a stimulus can either facilitate or disrupt performance in a working memory task: the role of fluid intelligence.
    Perfetti B; Tesse M; Varanese S; Saggino A; Onofrj M
    PLoS One; 2011; 6(10):e26249. PubMed ID: 22022580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological indices of interference resolution covary with individual fluid intelligence: investigating reactive control processes in a 3-back working memory task.
    Perfetti B; Varanese S; Mancino E; Mercuri P; Tesse M; Franciotti R; Bonanni L; Thomas A; Onofrj M
    Neuroimage; 2014 Jun; 93 Pt 1():146-53. PubMed ID: 24582918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural correlates of individual variation in two-back working memory and the relationship with fluid intelligence.
    Li G; Chen Y; Le TM; Wang W; Tang X; Li CR
    Sci Rep; 2021 May; 11(1):9980. PubMed ID: 33976306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence.
    Sandrini M; Rossini PM; Miniussi C
    Neuropsychologia; 2008; 46(7):2056-63. PubMed ID: 18336847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similar prefrontal cortical activities between general fluid intelligence and visuospatial working memory tasks in preschool children as revealed by optical topography.
    Kuwajima M; Sawaguchi T
    Exp Brain Res; 2010 Oct; 206(4):381-97. PubMed ID: 20853101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The time course of encoding and maintenance of task-relevant versus irrelevant object features in working memory.
    Bocincova A; Johnson JS
    Cortex; 2019 Feb; 111():196-209. PubMed ID: 30508678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of working memory training to the inhibitory control of auditory distraction.
    Kattner F
    Psychol Res; 2021 Nov; 85(8):3152-3166. PubMed ID: 33449207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of task-relevant saccadic eye movements performed during the encoding of a serial sequence on visuospatial memory performance.
    Martin L; Tapper A; Gonzalez DA; Leclerc M; Niechwiej-Szwedo E
    Exp Brain Res; 2017 May; 235(5):1519-1529. PubMed ID: 28251336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory objects in working memory include task-irrelevant features.
    Fischer C; Nolting C; Schneider F; Bledowski C; Kaiser J
    Sci Rep; 2024 Sep; 14(1):21216. PubMed ID: 39261536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task-irrelevant distractors in the delay period interfere selectively with visual short-term memory for spatial locations.
    Marini F; Scott J; Aron AR; Ester EF
    Atten Percept Psychophys; 2017 Jul; 79(5):1384-1392. PubMed ID: 28439791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of inhibition for working memory processes: ERP evidence from a short-term storage task.
    Getzmann S; Wascher E; Schneider D
    Psychophysiology; 2018 May; 55(5):e13026. PubMed ID: 29083480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual differences in working memory, secondary memory, and fluid intelligence: evidence from the levels-of-processing span task.
    Rose NS
    Can J Exp Psychol; 2013 Dec; 67(4):260-270. PubMed ID: 24341741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distractor-relevance determines whether task-switching enhances or impairs distractor memory.
    Chiu YC; Egner T
    J Exp Psychol Hum Percept Perform; 2016 Jan; 42(1):1-5. PubMed ID: 26594883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shielding cognition from nociception with working memory.
    Legrain V; Crombez G; Plaghki L; Mouraux A
    Cortex; 2013; 49(7):1922-34. PubMed ID: 23026759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid intelligence and executive functioning more alike than different?
    van Aken L; Kessels RP; Wingbermühle E; van der Veld WM; Egger JI
    Acta Neuropsychiatr; 2016 Feb; 28(1):31-7. PubMed ID: 26281913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development of non-spatial working memory capacity during childhood and adolescence and the role of interference control: an N-Back task study.
    Schleepen TM; Jonkman LM
    Dev Neuropsychol; 2010; 35(1):37-56. PubMed ID: 20390591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escaping the recent past: which stimulus dimensions influence proactive interference?
    Craig KS; Berman MG; Jonides J; Lustig C
    Mem Cognit; 2013 Jul; 41(5):650-70. PubMed ID: 23297049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interference from the irrelevant domain in n-back tasks: an ERP study.
    Chen YN; Mitra S; Schlaghecken F
    Acta Neurol Taiwan; 2007 Sep; 16(3):125-35. PubMed ID: 17966951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interference Control in Working Memory Is Associated with Ventrolateral Prefrontal Cortex Volume.
    Samrani G; Bäckman L; Persson J
    J Cogn Neurosci; 2019 Oct; 31(10):1491-1505. PubMed ID: 31172860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation between working memory performance and proactive interference control in post-traumatic stress disorder.
    Swick D; Cayton J; Ashley V; Turken AU
    Neuropsychologia; 2017 Feb; 96():111-121. PubMed ID: 28077328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.