These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22022595)

  • 1. MicroRNA-mediated positive feedback loop and optimized bistable switch in a cancer network Involving miR-17-92.
    Li Y; Li Y; Zhang H; Chen Y
    PLoS One; 2011; 6(10):e26302. PubMed ID: 22022595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc.
    Aguda BD; Kim Y; Piper-Hunter MG; Friedman A; Marsh CB
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19678-83. PubMed ID: 19066217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise propagation in gene regulation networks involving interlinked positive and negative feedback loops.
    Zhang H; Chen Y; Chen Y
    PLoS One; 2012; 7(12):e51840. PubMed ID: 23284787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical behaviors of Rb-E2F pathway including negative feedback loops involving miR449.
    Yan F; Liu H; Hao J; Liu Z
    PLoS One; 2012; 7(9):e43908. PubMed ID: 23028477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mRNA and miRNA Expression Analyses of the
    Gruszka R; Zakrzewski K; Liberski PP; Zakrzewska M
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33430425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling microRNA-transcription factor networks in cancer.
    Aguda BD
    Adv Exp Med Biol; 2013; 774():149-67. PubMed ID: 23377973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A miR-26a/E2F7 feedback loop contributes to tamoxifen resistance in ER-positive breast cancer.
    Liu J; Li X; Wang M; Xiao G; Yang G; Wang H; Li Y; Sun X; Qin S; Du N; Ren H; Pang Y
    Int J Oncol; 2018 Oct; 53(4):1601-1612. PubMed ID: 30066905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GAM/ZFp/ZNF512B is central to a gene sensor circuitry involving cell-cycle regulators, TGF{beta} effectors, Drosha and microRNAs with opposite oncogenic potentials.
    Tili E; Michaille JJ; Liu CG; Alder H; Taccioli C; Volinia S; Calin GA; Croce CM
    Nucleic Acids Res; 2010 Nov; 38(21):7673-88. PubMed ID: 20639536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryonic stem cell microRNAs: defining factors in induced pluripotent (iPS) and cancer (CSC) stem cells?
    Gunaratne PH
    Curr Stem Cell Res Ther; 2009 Sep; 4(3):168-77. PubMed ID: 19492978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Germinal Centre B Cell Functions and Lymphomagenesis: Circuits Involving MYC and MicroRNAs.
    Robaina MC; Mazzoccoli L; Klumb CE
    Cells; 2019 Oct; 8(11):. PubMed ID: 31683676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and analysis of the regulatory network of Myc and microRNAs from high-throughput experimental data.
    Xiong L; Jiang W; Zhou R; Mao C; Guo Z
    Comput Biol Med; 2013 Sep; 43(9):1252-60. PubMed ID: 23930820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Checks and balances: E2F-microRNA crosstalk in cancer control.
    Emmrich S; PĆ¼tzer BM
    Cell Cycle; 2010 Jul; 9(13):2555-67. PubMed ID: 20581444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noncoding RNAs Regulating p53 and c-Myc Signaling.
    Mei Y; Wu M
    Adv Exp Med Biol; 2016; 927():337-65. PubMed ID: 27376742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of bistability underlying mammalian cell cycle entry.
    Yao G; Tan C; West M; Nevins JR; You L
    Mol Syst Biol; 2011 Apr; 7():485. PubMed ID: 21525871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An E2F/miR-20a autoregulatory feedback loop.
    Sylvestre Y; De Guire V; Querido E; Mukhopadhyay UK; Bourdeau V; Major F; Ferbeyre G; Chartrand P
    J Biol Chem; 2007 Jan; 282(4):2135-43. PubMed ID: 17135249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration in microRNA-17-92 dynamics accounts for differential nature of cellular proliferation.
    Sengupta D; Govindaraj V; Kar S
    FEBS Lett; 2018 Feb; 592(3):446-458. PubMed ID: 29331028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling between feedback loops in autoregulatory networks affects bistability range, open-loop gain and switching times.
    Tiwari A; Igoshin OA
    Phys Biol; 2012 Oct; 9(5):055003. PubMed ID: 23011599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Myc-microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes.
    Polioudakis D; Bhinge AA; Killion PJ; Lee BK; Abell NS; Iyer VR
    Nucleic Acids Res; 2013 Feb; 41(4):2239-54. PubMed ID: 23303785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein.
    Xiong J; Du Q; Liang Z
    Oncogene; 2010 Sep; 29(35):4980-8. PubMed ID: 20562918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel miR-200c/c-myc negative regulatory feedback loop is essential to the EMT process, CSC biology and drug sensitivity in nasopharyngeal cancer.
    Yang J; Wu SP; Wang WJ; Jin ZR; Miao XB; Wu Y; Gou DM; Liu QZ; Yao KT
    Exp Cell Res; 2020 Jun; 391(2):111817. PubMed ID: 32179097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.