These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22022613)

  • 21. [Highly sensitive systems for experimental insertional mutagenesis in repair-deficient genetic environment in Drosophila melanogaster: new opportunities for studying postreplication repair of double-stranded DNA breaks and mechanisms of transposable element migration].
    Chmuzh EV; Shestakova LA; Volkova VS; Zakharov IK
    Genetika; 2007 Jan; 43(1):52-60. PubMed ID: 17333939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An efficient method to generate chromosomal rearrangements by targeted DNA double-strand breaks in Drosophila melanogaster.
    Egli D; Hafen E; Schaffner W
    Genome Res; 2004 Jul; 14(7):1382-93. PubMed ID: 15197166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromosome Preference During Homologous Recombination Repair of DNA Double-Strand Breaks in
    Fernandez J; Bloomer H; Kellam N; LaRocque JR
    G3 (Bethesda); 2019 Nov; 9(11):3773-3780. PubMed ID: 31519746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Secondary structure forming sequences drive SD-MMEJ repair of DNA double-strand breaks.
    Khodaverdian VY; Hanscom T; Yu AM; Yu TL; Mak V; Brown AJ; Roberts SA; McVey M
    Nucleic Acids Res; 2017 Dec; 45(22):12848-12861. PubMed ID: 29121353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site-specific genomic targeting in Drosophila.
    Horn C; Handler AM
    Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12483-8. PubMed ID: 16116081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transposon-free insertions for insect genetic engineering.
    Dafa'alla TH; Condon GC; Condon KC; Phillips CE; Morrison NI; Jin L; Epton MJ; Fu G; Alphey L
    Nat Biotechnol; 2006 Jul; 24(7):820-1. PubMed ID: 16823373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulating and targeting meiotic double-strand breaks in Saccharomyces cerevisiae.
    Nicolas A
    Methods Mol Biol; 2009; 557():27-33. PubMed ID: 19799174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation.
    Moynahan ME; Cui TY; Jasin M
    Cancer Res; 2001 Jun; 61(12):4842-50. PubMed ID: 11406561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple mechanisms contribute to double-strand break repair at rereplication forks in Drosophila follicle cells.
    Alexander JL; Beagan K; Orr-Weaver TL; McVey M
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13809-13814. PubMed ID: 27849606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51.
    Downing B; Morgan R; VanHulle K; Deem A; Malkova A
    Mutat Res; 2008 Oct; 645(1-2):9-18. PubMed ID: 18755201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A genetic screen for DNA double-strand break repair mutations in Drosophila.
    Wei DS; Rong YS
    Genetics; 2007 Sep; 177(1):63-77. PubMed ID: 17660539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-homologous end joining plays a key role in transgene concatemer formation in transgenic zebrafish embryos.
    Dai J; Cui X; Zhu Z; Hu W
    Int J Biol Sci; 2010 Dec; 6(7):756-68. PubMed ID: 21152116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiation-induced upregulation of gene expression from adenoviral vectors mediated by DNA damage repair and regulation.
    Nokisalmi P; Rajecki M; Pesonen S; Escutenaire S; Soliymani R; Tenhunen M; Ahtiainen L; Hemminki A
    Int J Radiat Oncol Biol Phys; 2012 May; 83(1):376-84. PubMed ID: 22019240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drosophila RecQ5 is required for efficient SSA repair and suppression of LOH in vivo.
    Chen Y; Dui W; Yu Z; Li C; Ma J; Jiao R
    Protein Cell; 2010 May; 1(5):478-90. PubMed ID: 21203963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Timely double-strand break repair and pathway choice in pericentromeric heterochromatin depend on the histone demethylase dKDM4A.
    Janssen A; Colmenares SU; Lee T; Karpen GH
    Genes Dev; 2019 Jan; 33(1-2):103-115. PubMed ID: 30578303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells.
    Salomon S; Puchta H
    EMBO J; 1998 Oct; 17(20):6086-95. PubMed ID: 9774352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repair of DNA double-strand breaks following UV damage in three Sulfolobus solfataricus strains.
    Rolfsmeier ML; Laughery MF; Haseltine CA
    J Bacteriol; 2010 Oct; 192(19):4954-62. PubMed ID: 20675475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genomic integrity and the repair of double-strand DNA breaks.
    Pastink A; Eeken JC; Lohman PH
    Mutat Res; 2001 Sep; 480-481():37-50. PubMed ID: 11506797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitation and analysis of the formation of HO-endonuclease stimulated chromosomal translocations by single-strand annealing in Saccharomyces cerevisiae.
    Liddell L; Manthey G; Pannunzio N; Bailis A
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21968396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage.
    Vu GTH; Cao HX; Reiss B; Schubert I
    New Phytol; 2017 Jun; 214(4):1712-1721. PubMed ID: 28245065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.