These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 22022702)

  • 41. Application of the lithiation-borylation reaction to the preparation of enantioenriched allylic boron reagents and subsequent in situ conversion into 1,2,4-trisubstituted homoallylic alcohols with complete control over all elements of stereochemistry.
    Althaus M; Mahmood A; Suárez JR; Thomas SP; Aggarwal VK
    J Am Chem Soc; 2010 Mar; 132(11):4025-8. PubMed ID: 20192266
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A strategy for isotope containment during radiosynthesis--devolatilisation of bromobenzene by fluorous-tagging-Ir-catalysed borylation en route to the 4-phenylpiperidine pharmacophore.
    Spivey AC; Martin LJ; Tseng CC; Ellames GJ; Kohler AD
    Org Biomol Chem; 2008 Nov; 6(22):4093-5. PubMed ID: 18972036
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Asymmetric total synthesis of solandelactone E: stereocontrolled synthesis of the 2-ene-1,4-diol core through a lithiation-borylation-allylation sequence.
    Robinson A; Aggarwal VK
    Angew Chem Int Ed Engl; 2010 Sep; 49(37):6673-5. PubMed ID: 20683835
    [No Abstract]   [Full Text] [Related]  

  • 44. Iodine electrophiles in stereoselective reactions: recent developments and synthetic applications.
    French AN; Bissmire S; Wirth T
    Chem Soc Rev; 2004 Jul; 33(6):354-62. PubMed ID: 15280968
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Axially chiral P-N ligands for the copper catalyzed beta-borylation of alpha,beta-unsaturated esters.
    Fleming WJ; Müller-Bunz H; Lillo V; Fernández E; Guiry PJ
    Org Biomol Chem; 2009 Jun; 7(12):2520-4. PubMed ID: 19503924
    [TBL] [Abstract][Full Text] [Related]  

  • 46. "Design" of boron-based compounds as pro-nucleophiles and co-catalysts for indium(I)-catalyzed allyl transfer to various Csp3-type electrophiles.
    Dao HT; Schneider U; Kobayashi S
    Chem Asian J; 2011 Sep; 6(9):2522-9. PubMed ID: 21728247
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly efficient one-pot access to functionalized arylboronic acids via noncryogenic bromine/magnesium exchanges.
    Leermann T; Leroux FR; Colobert F
    Org Lett; 2011 Sep; 13(17):4479-81. PubMed ID: 21834521
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sequential Ni-catalyzed borylation and cross-coupling of aryl halides via in situ prepared neopentylglycolborane.
    Rosen BM; Huang C; Percec V
    Org Lett; 2008 Jun; 10(12):2597-600. PubMed ID: 18484730
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enantioselective formation of arene oxides by direct oxidation of the arene.
    Murray RW; Singh M
    Enantiomer; 2000; 5(3-4):245-54. PubMed ID: 11126864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Asymmetric synthesis of allylsilanes by the borylation of lithiated carbamates: formal total synthesis of (-)-decarestrictine D.
    Binanzer M; Fang GY; Aggarwal VK
    Angew Chem Int Ed Engl; 2010 Jun; 49(25):4264-8. PubMed ID: 20446329
    [No Abstract]   [Full Text] [Related]  

  • 51. Pronounced effects of substituents on the iridium-catalyzed borylation of aryl C-H bonds.
    Liskey CW; Wei CS; Pahls DR; Hartwig JF
    Chem Commun (Camb); 2009 Oct; (37):5603-5. PubMed ID: 19753371
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electronic tuning of a carbene center via remote chemical induction, and relevant effects in catalysis.
    César V; Lugan N; Lavigne G
    Chemistry; 2010 Oct; 16(37):11432-42. PubMed ID: 20821762
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphinates as new electrophilic partners for cross-coupling reactions.
    Guo J; Harling JD; Steel PG; Woods TM
    Org Biomol Chem; 2008 Nov; 6(21):4053-8. PubMed ID: 18931814
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regio- and stereoselective copper-catalyzed β-borylation of allenoates by a preactivated diboron.
    Thorpe SB; Guo X; Santos WL
    Chem Commun (Camb); 2011 Jan; 47(1):424-6. PubMed ID: 20852792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental and computational evidence for a boron-assisted, sigma-bond metathesis pathway for alkane borylation.
    Webster CE; Fan Y; Hall MB; Kunz D; Hartwig JF
    J Am Chem Soc; 2003 Jan; 125(4):858-9. PubMed ID: 12537470
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient monophosphorus ligands for palladium-catalyzed Miyaura borylation.
    Tang W; Keshipeddy S; Zhang Y; Wei X; Savoie J; Patel ND; Yee NK; Senanayake CH
    Org Lett; 2011 Mar; 13(6):1366-9. PubMed ID: 21319836
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Catalytic hydroxylation of polypropylenes.
    Bae C; Hartwig JF; Boaen Harris NK; Long RO; Anderson KS; Hillmyer MA
    J Am Chem Soc; 2005 Jan; 127(2):767-76. PubMed ID: 15643903
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Main Group Catalyzed Arene Borylation: Challenges and Opportunities.
    Ingleson MJ
    ACS Catal; 2023 Jun; 13(11):7691-7697. PubMed ID: 37288098
    [No Abstract]   [Full Text] [Related]  

  • 59. Metal-free C-H Borylation and Hydroboration of Indoles.
    Nad P; Mukherjee A
    ACS Omega; 2023 Oct; 8(41):37623-37640. PubMed ID: 37867714
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Arene C-H borylation strategy enabled by a non-classical boron cluster-based electrophile.
    Kim S; Treacy JW; Nelson YA; Gonzalez JAM; Gembicky M; Houk KN; Spokoyny AM
    Nat Commun; 2023 Mar; 14(1):1671. PubMed ID: 36966132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.