BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22022860)

  • 1. Cell signaling analysis by mass spectrometry under coculture conditions on an integrated microfluidic device.
    Wei H; Li H; Mao S; Lin JM
    Anal Chem; 2011 Dec; 83(24):9306-13. PubMed ID: 22022860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-channel microfluidic devices combined with electrospray ionization quadrupole time-of-flight mass spectrometry applied to the monitoring of glutamate release from neuronal cells.
    Wei H; Li H; Gao D; Lin JM
    Analyst; 2010 Aug; 135(8):2043-50. PubMed ID: 20526497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic cell culture and metabolism detection with electrospray ionization quadrupole time-of-flight mass spectrometer.
    Gao D; Wei H; Guo GS; Lin JM
    Anal Chem; 2010 Jul; 82(13):5679-85. PubMed ID: 20540506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device.
    Gao D; Liu H; Lin JM; Wang Y; Jiang Y
    Lab Chip; 2013 Mar; 13(5):978-85. PubMed ID: 23340920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imitation of drug metabolism in human liver and cytotoxicity assay using a microfluidic device coupled to mass spectrometric detection.
    Mao S; Gao D; Liu W; Wei H; Lin JM
    Lab Chip; 2012 Jan; 12(1):219-26. PubMed ID: 22094544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of herbicides on a single C(30) bead via a microfluidic device combined with electrospray ionization quadrupole time-of-flight mass spectrometer.
    Wei H; Li H; Lin JM
    J Chromatogr A; 2009 Dec; 1216(52):9134-42. PubMed ID: 19539297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategy for signaling molecule detection by using an integrated microfluidic device coupled with mass spectrometry to study cell-to-cell communication.
    Mao S; Zhang J; Li H; Lin JM
    Anal Chem; 2013 Jan; 85(2):868-76. PubMed ID: 23240962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the absorption of methotrexate on cells and its cytotoxicity assay by using an integrated microfluidic device coupled to a mass spectrometer.
    Gao D; Li H; Wang N; Lin JM
    Anal Chem; 2012 Nov; 84(21):9230-7. PubMed ID: 23039268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance.
    Wu H; Zhai J; Tian Y; Lu H; Wang X; Jia W; Liu B; Yang P; Xu Y; Wang H
    Lab Chip; 2004 Dec; 4(6):588-97. PubMed ID: 15570370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling on-chip solid-phase extraction to electrospray mass spectrometry through an integrated electrospray tip.
    Yang Y; Li C; Lee KH; Craighead HG
    Electrophoresis; 2005 Oct; 26(19):3622-30. PubMed ID: 16136527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring cell secretions on microfluidic chips using solid-phase extraction with mass spectrometry.
    Dugan CE; Grinias JP; Parlee SD; El-Azzouny M; Evans CR; Kennedy RT
    Anal Bioanal Chem; 2017 Jan; 409(1):169-178. PubMed ID: 27761614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microscale solid-phase extraction poly(dimethylsiloxane) chip for enrichment and fluorescent detection of metal ions.
    Xue S; Liu Y; Li HF; Uchiyama K; Lin JM
    Talanta; 2013 Nov; 116():1005-9. PubMed ID: 24148508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tumor microenvironment model coupled with a mass spectrometry system to probe the metabolism of drug-loaded nanoparticles.
    Lin L; Zheng Y; Wu Z; Zhang W; Lin JM
    Chem Commun (Camb); 2019 Aug; 55(69):10218-10221. PubMed ID: 31364634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device.
    van der Meer AD; Orlova VV; ten Dijke P; van den Berg A; Mummery CL
    Lab Chip; 2013 Sep; 13(18):3562-8. PubMed ID: 23702711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multifunctional microfluidic droplet-array chip for analysis by electrospray ionization mass spectrometry.
    Su Y; Zhu Y; Fang Q
    Lab Chip; 2013 May; 13(10):1876-82. PubMed ID: 23525283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium.
    Vollmer AP; Probstein RF; Gilbert R; Thorsen T
    Lab Chip; 2005 Oct; 5(10):1059-66. PubMed ID: 16175261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves.
    Araci IE; Quake SR
    Lab Chip; 2012 Aug; 12(16):2803-6. PubMed ID: 22714259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(dimethylsiloxane)-based microchip for two-dimensional solid-phase extraction-capillary electrophoresis with an integrated electrospray emitter tip.
    Dahlin AP; Bergström SK; Andrén PE; Markides KE; Bergquist J
    Anal Chem; 2005 Aug; 77(16):5356-63. PubMed ID: 16097780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfabrication of polydimethylsiloxane electrospray ionization emitters.
    Kim JS; Knapp DR
    J Chromatogr A; 2001 Jul; 924(1-2):137-45. PubMed ID: 11521860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic origami: a new device format for in-line reaction monitoring by nanoelectrospray ionization mass spectrometry.
    Kirby AE; Wheeler AR
    Lab Chip; 2013 Jul; 13(13):2533-40. PubMed ID: 23412052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.