BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22023221)

  • 1. Population growth dynamics of carbon nanotubes.
    Bedewy M; Meshot ER; Reinker MJ; Hart AJ
    ACS Nano; 2011 Nov; 5(11):8974-89. PubMed ID: 22023221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst.
    Meshot ER; Plata DL; Tawfick S; Zhang Y; Verploegen EA; Hart AJ
    ACS Nano; 2009 Sep; 3(9):2477-86. PubMed ID: 19691287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical coupling limits the density and quality of self-organized carbon nanotube growth.
    Bedewy M; Hart AJ
    Nanoscale; 2013 Apr; 5(7):2928-37. PubMed ID: 23455411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-speed in situ X-ray scattering of carbon nanotube film nucleation and self-organization.
    Meshot ER; Verploegen E; Bedewy M; Tawfick S; Woll AR; Green KS; Hromalik M; Koerner LJ; Philipp HT; Tate MW; Gruner SM; Hart AJ
    ACS Nano; 2012 Jun; 6(6):5091-101. PubMed ID: 22571676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the lengthening kinetics of aligned nanostructures by spatiotemporal correlation of height and orientation.
    Meshot ER; Bedewy M; Lyons KM; Woll AR; Juggernauth KA; Tawfick S; Hart AJ
    Nanoscale; 2010 Jun; 2(6):896-900. PubMed ID: 20644774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth.
    Balakrishnan V; Bedewy M; Meshot ER; Pattinson SW; Polsen ES; Laye F; Zakharov DN; Stach EA; Hart AJ
    ACS Nano; 2016 Dec; 10(12):11496-11504. PubMed ID: 27959511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect.
    Xu M; Futaba DN; Yumura M; Hata K
    ACS Nano; 2012 Jul; 6(7):5837-44. PubMed ID: 22703583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoupled control of carbon nanotube forest density and diameter by continuous-feed convective assembly of catalyst particles.
    Polsen ES; Bedewy M; Hart AJ
    Small; 2013 Aug; 9(15):2564-75. PubMed ID: 23418098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition.
    Kim H; Kim KS; Kang J; Park YC; Chun KY; Boo JH; Kim YJ; Hong BH; Choi JB
    Nanotechnology; 2011 Mar; 22(9):095303. PubMed ID: 21270486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of density variation and non-covalent functionalization on the compressive behavior of carbon nanotube arrays.
    Misra A; Raney JR; Craig AE; Daraio C
    Nanotechnology; 2011 Oct; 22(42):425705. PubMed ID: 21937787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth, new growth, and amplification of carbon nanotubes as a function of catalyst composition.
    Crouse CA; Maruyama B; Colorado R; Back T; Barron AR
    J Am Chem Soc; 2008 Jun; 130(25):7946-54. PubMed ID: 18507464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-flight kinetic measurements of the aerosol growth of carbon nanotubes by electrical mobility classification.
    Kim SH; Zachariah MR
    J Phys Chem B; 2006 Mar; 110(10):4555-62. PubMed ID: 16526684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pretreatment control of carbon nanotube array growth for gas separation: alignment and growth studied using microscopy and small-angle X-ray scattering.
    Yang X; Yuan L; Peterson VK; Minett AI; Zhao M; Kirby N; Mudie S; Harris AT
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3063-70. PubMed ID: 23517303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergetic chemical coupling controls the uniformity of carbon nanotube microstructure growth.
    Bedewy M; Farmer B; Hart AJ
    ACS Nano; 2014 Jun; 8(6):5799-812. PubMed ID: 24794192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.
    Guzmán de Villoria R; Figueredo SL; Hart AJ; Steiner SA; Slocum AH; Wardle BL
    Nanotechnology; 2009 Oct; 20(40):405611. PubMed ID: 19752503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolating the Roles of Hydrogen Exposure and Trace Carbon Contamination on the Formation of Active Catalyst Populations for Carbon Nanotube Growth.
    Carpena-Núñez J; Boscoboinik JA; Saber S; Rao R; Zhong JQ; Maschmann MR; Kidambi PR; Dee NT; Zakharov DN; Hart AJ; Stach EA; Maruyama B
    ACS Nano; 2019 Aug; 13(8):8736-8748. PubMed ID: 31329425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the growth morphology of carbon nanotubes: from suspended bridges to upright forests.
    Cao Y; Xu YQ
    Nanoscale; 2012 Mar; 4(5):1682-7. PubMed ID: 22318533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of long and aligned multi-walled carbon nanotubes on carbon and metal substrates.
    Delmas M; Pinault M; Patel S; Porterat D; Reynaud C; Mayne-L'Hermite M
    Nanotechnology; 2012 Mar; 23(10):105604. PubMed ID: 22362164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing.
    Tawfick S; O'Brien K; Hart AJ
    Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.