These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
454 related articles for article (PubMed ID: 22023396)
21. The influence of different strains of Oenococcus oeni malolactic bacteria on profile of organic acids and phenolic compounds of red wine cultivars Rondo and Regent growing in a cold region. Wojdyło A; Samoticha J; Chmielewska J J Food Sci; 2020 Apr; 85(4):1070-1081. PubMed ID: 32125714 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of sequential inoculation of Saccharomyces cerevisiae and Oenococcus oeni strains on the chemical and aromatic profiles of cherry wines. Sun SY; Che CY; Sun TF; Lv ZZ; He SX; Gu HN; Shen WJ; Chi da C; Gao Y Food Chem; 2013 Jun; 138(4):2233-41. PubMed ID: 23497881 [TBL] [Abstract][Full Text] [Related]
23. Comparative metabolic profiling to investigate the contribution of O. oeni MLF starter cultures to red wine composition. Malherbe S; Tredoux AG; Nieuwoudt HH; du Toit M J Ind Microbiol Biotechnol; 2012 Mar; 39(3):477-94. PubMed ID: 22120647 [TBL] [Abstract][Full Text] [Related]
24. Leaf removal and wine composition of Vitis vinifera L. cv. Nero d'Avola: the volatile aroma constituents. Verzera A; Tripodi G; Dima G; Condurso C; Scacco A; Cincotta F; Giglio DM; Santangelo T; Sparacio A J Sci Food Agric; 2016 Jan; 96(1):150-9. PubMed ID: 25581439 [TBL] [Abstract][Full Text] [Related]
25. Impact of changes in wine composition produced by non-Saccharomyces on malolactic fermentation. Balmaseda A; Rozès N; Leal MÁ; Bordons A; Reguant C Int J Food Microbiol; 2021 Jan; 337():108954. PubMed ID: 33202298 [TBL] [Abstract][Full Text] [Related]
26. Methionine catabolism and production of volatile sulphur compounds by OEnococcus oeni. Pripis-Nicolau L; de Revel G; Bertrand A; Lonvaud-Funel A J Appl Microbiol; 2004; 96(5):1176-84. PubMed ID: 15078536 [TBL] [Abstract][Full Text] [Related]
27. Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment. Jiang J; Sumby KM; Sundstrom JF; Grbin PR; Jiranek V Food Microbiol; 2018 Aug; 73():150-159. PubMed ID: 29526200 [TBL] [Abstract][Full Text] [Related]
28. Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass spectrometry method for analysis of volatiles in wines. Paula Barros E; Moreira N; Elias Pereira G; Leite SG; Moraes Rezende C; Guedes de Pinho P Talanta; 2012 Nov; 101():177-86. PubMed ID: 23158309 [TBL] [Abstract][Full Text] [Related]
29. The effect of bacterial strain and aging on the secondary volatile metabolites produced during malolactic fermentation of tannat red wine. Boido E; Medina K; Fariña L; Carrau F; Versini G; Dellacassa E J Agric Food Chem; 2009 Jul; 57(14):6271-8. PubMed ID: 19548685 [TBL] [Abstract][Full Text] [Related]
30. Volatile profile and aroma potential of tropical Syrah wines elaborated in different maturation and maceration times using comprehensive two-dimensional gas chromatography and olfactometry. Aith Barbará J; Primieri Nicolli K; Souza-Silva ÉA; Camarão Telles Biasoto A; Welke JE; Alcaraz Zini C Food Chem; 2020 Mar; 308():125552. PubMed ID: 31677598 [TBL] [Abstract][Full Text] [Related]
31. Study of the influence of maceration time and oenological practices on the aroma profile of Vranec wines. Petropulos VI; Bogeva E; Stafilov T; Stefova M; Siegmund B; Pabi N; Lankmayr E Food Chem; 2014 Dec; 165():506-14. PubMed ID: 25038705 [TBL] [Abstract][Full Text] [Related]
32. Effect of Saccharomyces cerevisiae, Torulaspora delbrueckii and malolactic fermentation on fermentation kinetics and sensory property of black raspberry wines. Liu W; Li H; Jiang D; Zhang Y; Zhang S; Sun S Food Microbiol; 2020 Oct; 91():103551. PubMed ID: 32539970 [TBL] [Abstract][Full Text] [Related]
33. Wine aroma profile modification by Oenococcus oeni strains from Rioja Alavesa region: selection of potential malolactic starters. Diez-Ozaeta I; Lavilla M; Amárita F Int J Food Microbiol; 2021 Oct; 356():109324. PubMed ID: 34474175 [TBL] [Abstract][Full Text] [Related]
34. Regional features of northern Italian sparkling wines, identified using solid-phase micro extraction and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Carlin S; Vrhovsek U; Franceschi P; Lotti C; Bontempo L; Camin F; Toubiana D; Zottele F; Toller G; Fait A; Mattivi F Food Chem; 2016 Oct; 208():68-80. PubMed ID: 27132825 [TBL] [Abstract][Full Text] [Related]
35. Effect of maceration time on free and bound volatiles of red wines from cv. Karaoğlan (Vitis vinifera L.) grapes grown in Arapgir, Turkey. Yilmaztekin M; Kocabey N; Hayaloglu AA J Food Sci; 2015 Mar; 80(3):C556-63. PubMed ID: 25677953 [TBL] [Abstract][Full Text] [Related]
36. The influence of yeast on the aroma of Sauvignon Blanc wine. Swiegers JH; Kievit RL; Siebert T; Lattey KA; Bramley BR; Francis IL; King ES; Pretorius IS Food Microbiol; 2009 Apr; 26(2):204-11. PubMed ID: 19171264 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of lysozyme to control vinification process and histamine production in Rioja wines. Isabel L; Santamaria P; Tenorio C; Garijo P; Gutierrez AR; Lopez R J Microbiol Biotechnol; 2009 Sep; 19(9):1005-12. PubMed ID: 19809259 [TBL] [Abstract][Full Text] [Related]
38. Comparison of aroma-active volatiles and their sensory characteristics of mangosteen wines prepared by Saccharomyces cerevisiae with GC-olfactometry and principal component analysis. Xiao ZB; Liu JH; Chen F; Wang LY; Niu YW; Feng T; Zhu JC Nat Prod Res; 2015; 29(7):656-62. PubMed ID: 25428208 [TBL] [Abstract][Full Text] [Related]
39. Comparison of odor-active compounds in grapes and wines from vitis vinifera and non-foxy American grape species. Sun Q; Gates MJ; Lavin EH; Acree TE; Sacks GL J Agric Food Chem; 2011 Oct; 59(19):10657-64. PubMed ID: 21879766 [TBL] [Abstract][Full Text] [Related]
40. Screening of key odorants and anthocyanin compounds of cv. Okuzgozu (Vitis vinifera L.) red wines with a free run and pressed pomace using GC-MS-Olfactometry and LC-MS-MS. Tetik MA; Sevindik O; Kelebek H; Selli S J Mass Spectrom; 2018 May; 53(5):444-454. PubMed ID: 29469168 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]