These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 22023747)
1. Fatigue and biocompatibility properties of a poly(methyl methacrylate) bone cement with multi-walled carbon nanotubes. Ormsby R; McNally T; O'Hare P; Burke G; Mitchell C; Dunne N Acta Biomater; 2012 Mar; 8(3):1201-12. PubMed ID: 22023747 [TBL] [Abstract][Full Text] [Related]
2. Influence of multiwall carbon nanotube functionality and loading on mechanical properties of PMMA/MWCNT bone cements. Ormsby R; McNally T; Mitchell C; Dunne N J Mater Sci Mater Med; 2010 Aug; 21(8):2287-92. PubMed ID: 20091100 [TBL] [Abstract][Full Text] [Related]
3. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: effects on mechanical and thermal properties. Ormsby R; McNally T; Mitchell C; Dunne N J Mech Behav Biomed Mater; 2010 Feb; 3(2):136-45. PubMed ID: 20129413 [TBL] [Abstract][Full Text] [Related]
4. Augmentation of acrylic bone cement with multiwall carbon nanotubes. Marrs B; Andrews R; Rantell T; Pienkowski D J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130 [TBL] [Abstract][Full Text] [Related]
5. Incorporation of multi-walled carbon nanotubes to PMMA bone cement improves cytocompatibility and osseointegration. Wang C; Yu B; Fan Y; Ormsby RW; McCarthy HO; Dunne N; Li X Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109823. PubMed ID: 31349517 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of poly(methyl methacrylate)-based experimental bone cements reinforced with TiO2-SrO nanotubes. Khaled SM; Charpentier PA; Rizkalla AS Acta Biomater; 2010 Aug; 6(8):3178-86. PubMed ID: 20170759 [TBL] [Abstract][Full Text] [Related]
8. The formation of hollow poly(methyl methacrylate)/multiwalled carbon nanotube nanocomposite cylinders by microwave irradiation. Wang H; Feng J; Hu X; Ming Ng K Nanotechnology; 2009 Mar; 20(9):095601. PubMed ID: 19417492 [TBL] [Abstract][Full Text] [Related]
9. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement. Gonçalves G; Cruz SM; Ramalho A; Grácio J; Marques PA Nanoscale; 2012 Apr; 4(9):2937-45. PubMed ID: 22499394 [TBL] [Abstract][Full Text] [Related]
10. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers. Khaled SM; Charpentier PA; Rizkalla AS J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779 [TBL] [Abstract][Full Text] [Related]
11. Microspherical poly(methyl methacrylate)/multiwalled carbon nanotube composites prepared via in situ dispersion polymerization. Kim HS; Myung SJ; Jung R; Jin HJ J Nanosci Nanotechnol; 2007 Nov; 7(11):4045-8. PubMed ID: 18047115 [TBL] [Abstract][Full Text] [Related]
12. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements. Pahlevanzadeh F; Bakhsheshi-Rad HR; Hamzah E J Mech Behav Biomed Mater; 2018 Jun; 82():257-267. PubMed ID: 29627737 [TBL] [Abstract][Full Text] [Related]
13. The effect of extended polymer chains on the properties of transparent multi-walled carbon nanotubes/poly(methyl methacrylate/acrylic acid) film. Huang YL; Tien HW; Ma CC; Yu YH; Yang SY; Wei MH; Wu SY Nanotechnology; 2010 May; 21(18):185702. PubMed ID: 20378946 [TBL] [Abstract][Full Text] [Related]
14. Effect of modification degree of nanohydroxyapatite on biocompatibility and mechanical property of injectable poly(methyl methacrylate)-based bone cement. Quan C; Tang Y; Liu Z; Rao M; Zhang W; Liang P; Wu N; Zhang C; Shen H; Jiang Q J Biomed Mater Res B Appl Biomater; 2016 Apr; 104(3):576-84. PubMed ID: 25953071 [TBL] [Abstract][Full Text] [Related]
15. Interfacial strength of novel PMMA/HA/nanoclay bone cement. Wang CX; Tong J Biomed Mater Eng; 2008; 18(6):367-75. PubMed ID: 19197113 [TBL] [Abstract][Full Text] [Related]
16. Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness. Walsh WR; Svehla MJ; Russell J; Saito M; Nakashima T; Gillies RM; Bruce W; Hori R Biomaterials; 2004 Sep; 25(20):4929-34. PubMed ID: 15109853 [TBL] [Abstract][Full Text] [Related]
17. N-acetyl cysteine (NAC)-mediated detoxification and functionalization of poly(methyl methacrylate) bone cement. Tsukimura N; Yamada M; Aita H; Hori N; Yoshino F; Chang-Il Lee M; Kimoto K; Jewett A; Ogawa T Biomaterials; 2009 Jul; 30(20):3378-89. PubMed ID: 19303139 [TBL] [Abstract][Full Text] [Related]
18. Bone bonding ability and handling properties of a titania-polymethylmethacrylate (PMMA) composite bioactive bone cement modified with a unique PMMA powder. Fukuda C; Goto K; Imamura M; Neo M; Nakamura T Acta Biomater; 2011 Oct; 7(10):3595-600. PubMed ID: 21704200 [TBL] [Abstract][Full Text] [Related]
19. Experimental investigation and finite element modelling of PMMA/carbon nanotube nanobiocomposites for bone cement applications. Sadati V; Khakbiz M; Chagami M; Bagheri R; Chashmi FS; Akbari B; Shakibania S; Lee KB Soft Matter; 2022 Sep; 18(36):6800-6811. PubMed ID: 36043848 [TBL] [Abstract][Full Text] [Related]