These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 22024092)

  • 1. Not all transmembrane helices are born equal: Towards the extension of the sequence homology concept to membrane proteins.
    Wong WC; Maurer-Stroh S; Eisenhaber F
    Biol Direct; 2011 Oct; 6():57. PubMed ID: 22024092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More than 1,001 problems with protein domain databases: transmembrane regions, signal peptides and the issue of sequence homology.
    Wong WC; Maurer-Stroh S; Eisenhaber F
    PLoS Comput Biol; 2010 Jul; 6(7):e1000867. PubMed ID: 20686689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane helix: simple or complex.
    Wong WC; Maurer-Stroh S; Schneider G; Eisenhaber F
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W370-5. PubMed ID: 22564899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinctions between hydrophobic helices in globular proteins and transmembrane segments as factors in protein sorting.
    Cunningham F; Rath A; Johnson RM; Deber CM
    J Biol Chem; 2009 Feb; 284(8):5395-402. PubMed ID: 19095650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal gene duplication in the evolution of prokaryotic transmembrane proteins.
    Shimizu T; Mitsuke H; Noto K; Arai M
    J Mol Biol; 2004 May; 339(1):1-15. PubMed ID: 15123416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Web-based programs for the display and analysis of transmembrane alpha-helices in aligned protein sequences.
    Zhou X; Yang NM; Tran CV; Hvorup RN; Saier MH
    J Mol Microbiol Biotechnol; 2003; 5(1):1-6. PubMed ID: 12673055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational differentiation of N-terminal signal peptides and transmembrane helices.
    Yuan Z; Davis MJ; Zhang F; Teasdale RD
    Biochem Biophys Res Commun; 2003 Dec; 312(4):1278-83. PubMed ID: 14652012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. dissectHMMER: a HMMER-based score dissection framework that statistically evaluates fold-critical sequence segments for domain fold similarity.
    Wong WC; Yap CK; Eisenhaber B; Eisenhaber F
    Biol Direct; 2015 Aug; 10():39. PubMed ID: 26228544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote homology detection of integral membrane proteins using conserved sequence features.
    Bernsel A; Viklund H; Elofsson A
    Proteins; 2008 May; 71(3):1387-99. PubMed ID: 18076048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physicochemical factors for discriminating between soluble and membrane proteins: hydrophobicity of helical segments and protein length.
    Mitaku S; Hirokawa T
    Protein Eng; 1999 Nov; 12(11):953-7. PubMed ID: 10585500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between hydrophobicity sequence and accessibility sequence of membrane proteins.
    Xu Q
    Protein Pept Lett; 2004 Dec; 11(6):533-7. PubMed ID: 15579121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How important are transmembrane helices of bitopic membrane proteins?
    Zviling M; Kochva U; Arkin IT
    Biochim Biophys Acta; 2007 Mar; 1768(3):387-92. PubMed ID: 17258687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method.
    Cserzö M; Wallin E; Simon I; von Heijne G; Elofsson A
    Protein Eng; 1997 Jun; 10(6):673-6. PubMed ID: 9278280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SMART: identification and annotation of domains from signalling and extracellular protein sequences.
    Ponting CP; Schultz J; Milpetz F; Bork P
    Nucleic Acids Res; 1999 Jan; 27(1):229-32. PubMed ID: 9847187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins?
    Park Y; Helms V
    Biopolymers; 2006 Nov; 83(4):389-99. PubMed ID: 16838301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological analysis of integral membrane constituents of prokaryotic ABC efflux systems.
    Khwaja M; Ma Q; Saier MH
    Res Microbiol; 2005 Mar; 156(2):270-7. PubMed ID: 15748994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The topology of pen-2, a γ-secretase subunit, revisited: evidence for a reentrant loop and a single pass transmembrane domain.
    Zhang X; Yu CJ; Sisodia SS
    Mol Neurodegener; 2015 Aug; 10():39. PubMed ID: 26296997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helix perturbations in membrane proteins assist in inter-helical interactions and optimal helix positioning in the bilayer.
    Shelar A; Bansal M
    Biochim Biophys Acta; 2016 Nov; 1858(11):2804-2817. PubMed ID: 27521749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An amino acid "transmembrane tendency" scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity.
    Zhao G; London E
    Protein Sci; 2006 Aug; 15(8):1987-2001. PubMed ID: 16877712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.
    Shelar A; Bansal M
    Proteins; 2014 Dec; 82(12):3420-36. PubMed ID: 25257385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.