These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 22024092)

  • 21. Recognition of transmembrane helices by the endoplasmic reticulum translocon.
    Hessa T; Kim H; Bihlmaier K; Lundin C; Boekel J; Andersson H; Nilsson I; White SH; von Heijne G
    Nature; 2005 Jan; 433(7024):377-81. PubMed ID: 15674282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the necessity of dissecting sequence similarity scores into segment-specific contributions for inferring protein homology, function prediction and annotation.
    Wong WC; Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    BMC Bioinformatics; 2014 Jun; 15():166. PubMed ID: 24890864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Converting a marginally hydrophobic soluble protein into a membrane protein.
    Nørholm MH; Cunningham F; Deber CM; von Heijne G
    J Mol Biol; 2011 Mar; 407(1):171-9. PubMed ID: 21262233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes.
    Krishnakumar SS; London E
    J Mol Biol; 2007 Nov; 374(3):671-87. PubMed ID: 17950311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The prediction of amphiphilic alpha-helices.
    Phoenix DA; Harris F; Daman OA; Wallace J
    Curr Protein Pept Sci; 2002 Apr; 3(2):201-21. PubMed ID: 12188904
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of transmembrane protein functions by binary topology patterns.
    Sugiyama Y; Polulyakh N; Shimizu T
    Protein Eng; 2003 Jul; 16(7):479-88. PubMed ID: 12915725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classification of transmembrane segments in human proteins using wavelet-based energy.
    Kitsas IK; Hadjileontiadis LJ; Panas SM
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1225-8. PubMed ID: 18002184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteome-wide functional classification and identification of prokaryotic transmembrane proteins by transmembrane topology similarity comparison.
    Arai M; Okumura K; Satake M; Shimizu T
    Protein Sci; 2004 Aug; 13(8):2170-83. PubMed ID: 15273311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A tale of two symmetrical tails: structural and functional characteristics of palindromes in proteins.
    Sheari A; Kargar M; Katanforoush A; Arab S; Sadeghi M; Pezeshk H; Eslahchi C; Marashi SA
    BMC Bioinformatics; 2008 Jun; 9():274. PubMed ID: 18547401
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accessibility of introduced cysteines in chemoreceptor transmembrane helices reveals boundaries interior to bracketing charged residues.
    Boldog T; Hazelbauer GL
    Protein Sci; 2004 Jun; 13(6):1466-75. PubMed ID: 15133159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrophobic pulses predict transmembrane helix irregularities and channel transmembrane units.
    Paulet D; Claustres M; Béroud C
    BMC Bioinformatics; 2011 May; 12():135. PubMed ID: 21545751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequencies of hydrophobic and hydrophilic runs and alternations in proteins of known structure.
    Schwartz R; King J
    Protein Sci; 2006 Jan; 15(1):102-12. PubMed ID: 16373477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PSI/TM-Coffee: a web server for fast and accurate multiple sequence alignments of regular and transmembrane proteins using homology extension on reduced databases.
    Floden EW; Tommaso PD; Chatzou M; Magis C; Notredame C; Chang JM
    Nucleic Acids Res; 2016 Jul; 44(W1):W339-43. PubMed ID: 27106060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrophobicity and prediction of the secondary structure of membrane proteins and peptides.
    Klevanik AV
    Membr Cell Biol; 2001 Jul; 14(5):673-97. PubMed ID: 11699870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins.
    Forrest LR; Tang CL; Honig B
    Biophys J; 2006 Jul; 91(2):508-17. PubMed ID: 16648166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction.
    Pilpel Y; Ben-Tal N; Lancet D
    J Mol Biol; 1999 Dec; 294(4):921-35. PubMed ID: 10588897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrophobic mismatch of mobile transmembrane helices: Merging theory and experiments.
    Strandberg E; Esteban-Martín S; Ulrich AS; Salgado J
    Biochim Biophys Acta; 2012 May; 1818(5):1242-9. PubMed ID: 22326890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational studies of membrane proteins: models and predictions for biological understanding.
    Liang J; Naveed H; Jimenez-Morales D; Adamian L; Lin M
    Biochim Biophys Acta; 2012 Apr; 1818(4):927-41. PubMed ID: 22051023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. STAM: simple transmembrane alignment method.
    Shafrir Y; Guy HR
    Bioinformatics; 2004 Mar; 20(5):758-69. PubMed ID: 14751993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An investigation into the ability to define transmembrane protein spans using the biophysical properties of amino acid residues.
    Daman O; Wallace J; Harris F; Phoenix DA
    Mol Cell Biochem; 2005 Jul; 275(1-2):189-97. PubMed ID: 16335798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.