These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 22024316)
21. Crustacean conundrums: a review of opsin diversity and evolution. Palecanda S; Iwanicki T; Steck M; Porter ML Philos Trans R Soc Lond B Biol Sci; 2022 Oct; 377(1862):20210289. PubMed ID: 36058240 [TBL] [Abstract][Full Text] [Related]
22. Adaptive loss of ultraviolet-sensitive/violet-sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi). David-Gray ZK; Bellingham J; Munoz M; Avivi A; Nevo E; Foster RG Eur J Neurosci; 2002 Oct; 16(7):1186-94. PubMed ID: 12405979 [TBL] [Abstract][Full Text] [Related]
23. Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes. Hauzman E; Bonci DMO; Suárez-Villota EY; Neitz M; Ventura DF BMC Evol Biol; 2017 Dec; 17(1):249. PubMed ID: 29228925 [TBL] [Abstract][Full Text] [Related]
24. Retinal photoreceptor arrangement, SWS1 and LWS opsin sequence, and electroretinography in the South American marsupial Thylamys elegans (Waterhouse, 1839). Palacios AG; Bozinovic F; Vielma A; Arrese CA; Hunt DM; Peichl L J Comp Neurol; 2010 May; 518(9):1589-602. PubMed ID: 20187149 [TBL] [Abstract][Full Text] [Related]
25. Distinctive convergence in Australian floral colours seen through the eyes of Australian birds. Burd M; Stayton CT; Shrestha M; Dyer AG Proc Biol Sci; 2014 Apr; 281(1781):20132862. PubMed ID: 24573847 [TBL] [Abstract][Full Text] [Related]
26. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds. Toomey MB; Lind O; Frederiksen R; Curley RW; Riedl KM; Wilby D; Schwartz SJ; Witt CC; Harrison EH; Roberts NW; Vorobyev M; McGraw KJ; Cornwall MC; Kelber A; Corbo JC Elife; 2016 Jul; 5():. PubMed ID: 27402384 [TBL] [Abstract][Full Text] [Related]
27. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Parry JW; Carleton KL; Spady T; Carboo A; Hunt DM; Bowmaker JK Curr Biol; 2005 Oct; 15(19):1734-9. PubMed ID: 16213819 [TBL] [Abstract][Full Text] [Related]
28. Assessing the use of genomic DNA as a predictor of the maximum absorbance wavelength of avian SWS1 opsin visual pigments. Odeen A; Hart NS; Håstad O J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Feb; 195(2):167-73. PubMed ID: 19048261 [TBL] [Abstract][Full Text] [Related]
29. Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates. Hunt DM; Cowing JA; Wilkie SE; Parry JW; Poopalasundaram S; Bowmaker JK Photochem Photobiol Sci; 2004 Aug; 3(8):713-20. PubMed ID: 15295625 [TBL] [Abstract][Full Text] [Related]
30. Ultraviolet photopigment sensitivity and ocular media transmittance in gulls, with an evolutionary perspective. Håstad O; Partridge JC; Odeen A J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jun; 195(6):585-90. PubMed ID: 19308422 [TBL] [Abstract][Full Text] [Related]
31. Ultraviolet vision in birds: the importance of transparent eye media. Lind O; Mitkus M; Olsson P; Kelber A Proc Biol Sci; 2014 Jan; 281(1774):20132209. PubMed ID: 24258716 [TBL] [Abstract][Full Text] [Related]
32. Rapid light-induced shifts in opsin expression: finding new opsins, discerning mechanisms of change, and implications for visual sensitivity. Fuller RC; Claricoates KM Mol Ecol; 2011 Aug; 20(16):3321-35. PubMed ID: 21749514 [TBL] [Abstract][Full Text] [Related]
33. Ultraviolet vision in lacertid lizards: evidence from retinal structure, eye transmittance, SWS1 visual pigment genes and behaviour. Pérez i de Lanuza G; Font E J Exp Biol; 2014 Aug; 217(Pt 16):2899-909. PubMed ID: 24902749 [TBL] [Abstract][Full Text] [Related]
34. New primers for the avian SWS1 pigment opsin gene reveal new amino acid configurations in spectral sensitivity tuning sites. Odeen A; Håstad O J Hered; 2009; 100(6):784-9. PubMed ID: 19687143 [TBL] [Abstract][Full Text] [Related]
35. A cure for the blues: opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae). Lord NP; Plimpton RL; Sharkey CR; Suvorov A; Lelito JP; Willardson BM; Bybee SM BMC Evol Biol; 2016 May; 16(1):107. PubMed ID: 27193495 [TBL] [Abstract][Full Text] [Related]
36. Allelic variation in Malawi cichlid opsins: a tale of two genera. Smith AR; Carleton KL J Mol Evol; 2010 Jun; 70(6):593-604. PubMed ID: 20523974 [TBL] [Abstract][Full Text] [Related]
37. A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment. Parry JW; Poopalasundaram S; Bowmaker JK; Hunt DM Biochemistry; 2004 Jun; 43(25):8014-20. PubMed ID: 15209496 [TBL] [Abstract][Full Text] [Related]
38. Pollinating birds differ in spectral sensitivity. Odeen A; Håstad O J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Feb; 196(2):91-6. PubMed ID: 20049459 [TBL] [Abstract][Full Text] [Related]
39. Archelosaurian Color Vision, Parietal Eye Loss, and the Crocodylian Nocturnal Bottleneck. Emerling CA Mol Biol Evol; 2017 Mar; 34(3):666-676. PubMed ID: 27940498 [TBL] [Abstract][Full Text] [Related]
40. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in warblers. Bloch NI; Morrow JM; Chang BS; Price TD Evolution; 2015 Feb; 69(2):341-56. PubMed ID: 25496318 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]