BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22024400)

  • 1. Methylmethacrylate-sulfopropylmethacrylate nanoparticles with surface RMP-7 for targeting delivery of antiretroviral drugs across the blood-brain barrier.
    Kuo YC; Lee CL
    Colloids Surf B Biointerfaces; 2012 Feb; 90():75-82. PubMed ID: 22024400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of stavudine, delavirdine, and saquinavir across the blood-brain barrier by polybutylcyanoacrylate, methylmethacrylate-sulfopropylmethacrylate, and solid lipid nanoparticles.
    Kuo YC; Su FL
    Int J Pharm; 2007 Aug; 340(1-2):143-52. PubMed ID: 17418986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of saquinavir across human brain-microvascular endothelial cells by poly(lactide-co-glycolide) nanoparticles with surface poly-(γ-glutamic acid).
    Kuo YC; Yu HW
    Int J Pharm; 2011 Sep; 416(1):365-75. PubMed ID: 21736932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromagnetic interference in the permeability of saquinavir across the blood-brain barrier using nanoparticulate carriers.
    Kuo YC; Kuo CY
    Int J Pharm; 2008 Mar; 351(1-2):271-81. PubMed ID: 17976933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood-brain barrier.
    Kuo YC; Chen HH
    Int J Pharm; 2006 Dec; 327(1-2):160-9. PubMed ID: 16939704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid lipid nanoparticles comprising internal Compritol 888 ATO, tripalmitin and cacao butter for encapsulating and releasing stavudine, delavirdine and saquinavir.
    Kuo YC; Chung CY
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):682-90. PubMed ID: 21865017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loading efficiency of stavudine on polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate copolymer nanoparticles.
    Kuo YC
    Int J Pharm; 2005 Feb; 290(1-2):161-72. PubMed ID: 15664142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationic solid lipid nanoparticles with cholesterol-mediated surface layer for transporting saquinavir to the brain.
    Kuo YC; Wang CC
    Biotechnol Prog; 2014; 30(1):198-206. PubMed ID: 24167123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting delivery of saquinavir to the brain using 83-14 monoclonal antibody-grafted solid lipid nanoparticles.
    Kuo YC; Ko HF
    Biomaterials; 2013 Jul; 34(20):4818-30. PubMed ID: 23545288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of ornithine decarboxylase during the transport of saquinavir across the blood-brain barrier using composite polymeric nanocarriers under an electromagnetic field.
    Kuo YC; Yu HW
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):627-34. PubMed ID: 21855303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of electromagnetic field on endocytosis of cationic solid lipid nanoparticles by human brain-microvascular endothelial cells.
    Kuo YC; Chen HH
    J Drug Target; 2010 Jul; 18(6):447-56. PubMed ID: 20528098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quaternary ammonium beta-cyclodextrin nanoparticles for enhancing doxorubicin permeability across the in vitro blood-brain barrier.
    Gil ES; Li J; Xiao H; Lowe TL
    Biomacromolecules; 2009 Mar; 10(3):505-16. PubMed ID: 19216528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcytosis of CRM197-grafted polybutylcyanoacrylate nanoparticles for delivering zidovudine across human brain-microvascular endothelial cells.
    Kuo YC; Chung CY
    Colloids Surf B Biointerfaces; 2012 Mar; 91():242-9. PubMed ID: 22137614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier.
    Beloqui A; Solinís MÁ; Gascón AR; del Pozo-Rodríguez A; des Rieux A; Préat V
    J Control Release; 2013 Mar; 166(2):115-23. PubMed ID: 23266764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cationic albumin conjugated pegylated nanoparticle with its transcytosis ability and little toxicity against blood-brain barrier.
    Lu W; Tan YZ; Hu KL; Jiang XG
    Int J Pharm; 2005 May; 295(1-2):247-60. PubMed ID: 15848009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyethyleneimine/poly-(γ-glutamic acid)/poly(lactide-co-glycolide) nanoparticles for loading and releasing antiretroviral drug.
    Kuo YC; Yu HW
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):158-64. PubMed ID: 21764569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. β-cyclodextrin-poly(β-amino ester) nanoparticles for sustained drug delivery across the blood-brain barrier.
    Gil ES; Wu L; Xu L; Lowe TL
    Biomacromolecules; 2012 Nov; 13(11):3533-41. PubMed ID: 23066958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on nerve growth factor liposomes on crossing blood-brain barrier in vitro and in vivo].
    Xie Y; Ye LY; Cui W; Xu K; Zhang XB; Lou JN; Hou XP
    Yao Xue Xue Bao; 2004 Nov; 39(11):944-8. PubMed ID: 15696939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes.
    Nakagawa S; Deli MA; Kawaguchi H; Shimizudani T; Shimono T; Kittel A; Tanaka K; Niwa M
    Neurochem Int; 2009; 54(3-4):253-63. PubMed ID: 19111869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro.
    Jallouli Y; Paillard A; Chang J; Sevin E; Betbeder D
    Int J Pharm; 2007 Nov; 344(1-2):103-9. PubMed ID: 17651930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.