BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22024451)

  • 1. Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1.
    Flynn CM; Hunt KA; Gralnick JA; Srienc F
    Biosystems; 2012 Feb; 107(2):120-8. PubMed ID: 22024451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis.
    Biffinger JC; Ray R; Little BJ; Fitzgerald LA; Ribbens M; Finkel SE; Ringeisen BR
    Biotechnol Bioeng; 2009 Jun; 103(3):524-31. PubMed ID: 19189395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1.
    Hunt KA; Flynn JM; Naranjo B; Shikhare ID; Gralnick JA
    J Bacteriol; 2010 Jul; 192(13):3345-51. PubMed ID: 20400539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A kinetic model describing Shewanella oneidensis MR-1 growth, substrate consumption, and product secretion.
    Tang YJ; Meadows AL; Keasling JD
    Biotechnol Bioeng; 2007 Jan; 96(1):125-33. PubMed ID: 16865732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of d-Lactate Dehydrogenases in the Anaerobic Growth of
    Kasai T; Suzuki Y; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30504209
    [No Abstract]   [Full Text] [Related]  

  • 6. Identification of diverse carbon utilization pathways in Shewanella oneidensis MR-1 via expression profiling.
    Driscoll ME; Romine MF; Juhn FS; Serres MH; McCue LA; Beliaev AS; Fredrickson JK; Gardner TS
    Genome Inform; 2007; 18():287-98. PubMed ID: 18546496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor.
    Kane AL; Brutinel ED; Joo H; Maysonet R; VanDrisse CM; Kotloski NJ; Gralnick JA
    J Bacteriol; 2016 Apr; 198(8):1337-46. PubMed ID: 26883823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions.
    Choi D; Lee SB; Kim S; Min B; Choi IG; Chang IS
    Bioresour Technol; 2014 Feb; 154():59-66. PubMed ID: 24384311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic central metabolic pathways in Shewanella oneidensis MR-1 reinterpreted in the light of isotopic metabolite labeling.
    Tang YJ; Meadows AL; Kirby J; Keasling JD
    J Bacteriol; 2007 Feb; 189(3):894-901. PubMed ID: 17114268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxic effects of chromium(VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1.
    Viamajala S; Peyton BM; Sani RK; Apel WA; Petersen JN
    Biotechnol Prog; 2004; 20(1):87-95. PubMed ID: 14763828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid mutant screening technique for detection of technetium [Tc(VII)] reduction-deficient mutants of Shewanella oneidensis MR-1.
    Payne AN; Dichristina TJ
    FEMS Microbiol Lett; 2006 Jun; 259(2):282-7. PubMed ID: 16734791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth.
    Duhl KL; Tefft NM; TerAvest MA
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654176
    [No Abstract]   [Full Text] [Related]  

  • 13. Anomalies of the anaerobic tricarboxylic acid cycle in Shewanella oneidensis revealed by Tn-seq.
    Brutinel ED; Gralnick JA
    Mol Microbiol; 2012 Oct; 86(2):273-83. PubMed ID: 22925268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A derivative of the menaquinone precursor 1,4-dihydroxy-2-naphthoate is involved in the reductive transformation of carbon tetrachloride by aerobically grown Shewanella oneidensis MR-1.
    Ward MJ; Fu QS; Rhoads KR; Yeung CH; Spormann AM; Criddle CS
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):571-7. PubMed ID: 12908086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor.
    Jones ME; Fennessey CM; DiChristina TJ; Taillefert M
    Environ Microbiol; 2010 Apr; 12(4):938-50. PubMed ID: 20089045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secreted Flavin Cofactors for Anaerobic Respiration of Fumarate and Urocanate by Shewanella oneidensis: Cost and Role.
    Kees ED; Pendleton AR; Paquete CM; Arriola MB; Kane AL; Kotloski NJ; Intile PJ; Gralnick JA
    Appl Environ Microbiol; 2019 Aug; 85(16):. PubMed ID: 31175188
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of electrochemically active bacteria utilizing a high-throughput voltage-based screening assay.
    Biffinger J; Ribbens M; Ringeisen B; Pietron J; Finkel S; Nealson K
    Biotechnol Bioeng; 2009 Feb; 102(2):436-44. PubMed ID: 18767193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1.
    McLean JS; Pinchuk GE; Geydebrekht OV; Bilskis CL; Zakrajsek BA; Hill EA; Saffarini DA; Romine MF; Gorby YA; Fredrickson JK; Beliaev AS
    Environ Microbiol; 2008 Jul; 10(7):1861-76. PubMed ID: 18412550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment.
    Tront JM; Fortner JD; Plötze M; Hughes JB; Puzrin AM
    Biotechnol Lett; 2008 Aug; 30(8):1385-90. PubMed ID: 18414805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production.
    Rosenbaum M; Cotta MA; Angenent LT
    Biotechnol Bioeng; 2010 Apr; 105(5):880-8. PubMed ID: 19998276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.