These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 22024592)

  • 41. Zebrafish biosensor for toxicant induced muscle hyperactivity.
    Shahid M; Takamiya M; Stegmaier J; Middel V; Gradl M; Klüver N; Mikut R; Dickmeis T; Scholz S; Rastegar S; Yang L; Strähle U
    Sci Rep; 2016 Mar; 6():23768. PubMed ID: 27029555
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics.
    Pujol-Vila F; Vigués N; Díaz-González M; Muñoz-Berbel X; Mas J
    Biosens Bioelectron; 2015 May; 67():272-9. PubMed ID: 25172027
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent advancements in sensing techniques based on functional materials for organophosphate pesticides.
    Kumar P; Kim KH; Deep A
    Biosens Bioelectron; 2015 Aug; 70():469-81. PubMed ID: 25864041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A bioluminescent sensor for high throughput toxicity classification.
    Kim BC; Gu MB
    Biosens Bioelectron; 2003 Aug; 18(8):1015-21. PubMed ID: 12782464
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New insights into organ-specific oxidative stress mechanisms using a novel biosensor zebrafish.
    Mourabit S; Fitzgerald JA; Ellis RP; Takesono A; Porteus CS; Trznadel M; Metz J; Winter MJ; Kudoh T; Tyler CR
    Environ Int; 2019 Dec; 133(Pt A):105138. PubMed ID: 31645010
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An activated sludge-based biosensor for rapid IC50 estimation and on-line toxicity monitoring.
    Kong Z; Vanrolleghem PA; Verstraete W
    Biosens Bioelectron; 1993; 8(1):49-58. PubMed ID: 8499087
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluorescence imaging for a noninvasive in vivo toxicity-test using a transgenic silkworm expressing green fluorescent protein.
    Inagaki Y; Matsumoto Y; Ishii M; Uchino K; Sezutsu H; Sekimizu K
    Sci Rep; 2015 Jun; 5():11180. PubMed ID: 26061948
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Avoidance tests with small fish: determination of the median avoidance concentration and of the lowest-observed-effect gradient.
    Moreira-Santos M; Donato C; Lopes I; Ribeiro R
    Environ Toxicol Chem; 2008 Jul; 27(7):1576-82. PubMed ID: 18260687
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A sensitive biomarker for the detection of aquatic contamination based on behavioral assays using zebrafish larvae.
    Nüßer LK; Skulovich O; Hartmann S; Seiler TB; Cofalla C; Schuettrumpf H; Hollert H; Salomons E; Ostfeld A
    Ecotoxicol Environ Saf; 2016 Nov; 133():271-80. PubMed ID: 27479771
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Zebrafish transgenic line huORFZ is an effective living bioindicator for detecting environmental toxicants.
    Lee HC; Lu PN; Huang HL; Chu C; Li HP; Tsai HJ
    PLoS One; 2014; 9(3):e90160. PubMed ID: 24594581
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel integrated biosensor based on co-immobilizing the mediator and microorganism for water biotoxicity assay.
    Li J; Yu Y; Qian J; Wang Y; Zhang J; Zhi J
    Analyst; 2014 Jun; 139(11):2806-12. PubMed ID: 24728093
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Water pollutant monitoring by a whole cell array through lens-free detection on CCD.
    Tsai HF; Tsai YC; Yagur-Kroll S; Palevsky N; Belkin S; Cheng JY
    Lab Chip; 2015 Mar; 15(6):1472-80. PubMed ID: 25608666
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Whole-cell method for phenol detection based on the color reaction of phenol with 4-aminoantipyrine catalyzed by CotA laccase on endospore surfaces.
    Zeng Z; Tian L; Li Z; Jia L; Zhang X; Xia M; Hu Y
    Biosens Bioelectron; 2015 Jul; 69():162-6. PubMed ID: 25725465
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potentiometric biosensor for studying hydroquinone cytotoxicity in vitro.
    Wang Y; Chen Q; Zeng X
    Biosens Bioelectron; 2010 Feb; 25(6):1356-62. PubMed ID: 19926470
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineered Sensor Zebrafish for Fast Detection and Real-Time Tracking of Apoptosis at Single-Cell Resolution in Live Animals.
    Jia H; Song Y; Huang B; Ge W; Luo KQ
    ACS Sens; 2020 Mar; 5(3):823-830. PubMed ID: 32090557
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Combined physico-chemical and biological sensing in environmental monitoring.
    Bhatia R; Dilleen JW; Atkinson AL; Rawson DM
    Biosens Bioelectron; 2003 May; 18(5-6):667-74. PubMed ID: 12706577
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fluorescence resonance energy transfer-based sensor zebrafish for detecting toxic agents with single-cell sensitivity.
    Jia H; Luo KQ
    J Hazard Mater; 2021 Apr; 408():124826. PubMed ID: 33421851
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Label-free photoacoustic microscopy: a potential tool for the live imaging of blood disorders in zebrafish.
    Yang W; Wang W; Jing L; Chen SL
    Biomed Opt Express; 2021 Jun; 12(6):3643-3657. PubMed ID: 34221685
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of a chamber for in situ toxicity tests with small fishes.
    Meletti PC; Rocha O
    Braz J Biol; 2002 Feb; 62(1):187-90. PubMed ID: 12185919
    [No Abstract]   [Full Text] [Related]  

  • 60. Biomonitoring in the aquatic environment: use of molecular biomarkers.
    Goldfarb P; Livingstone D; Birmelin C
    Biochem Soc Trans; 1998 Nov; 26(4):690-4. PubMed ID: 10047808
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.