These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 2202490)

  • 41. Stimulatory effect of the D2 antagonist sulpiride on glucose utilization in dopaminergic regions of rat brain.
    Pizzolato G; Soncrant TT; Larson DM; Rapoport SI
    J Neurochem; 1987 Aug; 49(2):631-8. PubMed ID: 2955080
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acute ethanol administration selectively alters localized cerebral glucose metabolism.
    Eckardt MJ; Campbell GA; Marietta CA; Majchrowicz E; Weight FF
    Brain Res; 1988 Mar; 444(1):53-8. PubMed ID: 3129139
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative measurement of local cerebral metabolic rate for glucose utilizing tritiated 2-deoxyglucose.
    Alexander GM; Schwartzman RJ; Bell RD; Yu J; Renthal A
    Brain Res; 1981 Oct; 223(1):59-67. PubMed ID: 7284810
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Morphine-induced alterations of local cerebral glucose utilization in the basal ganglia of rats.
    Beck T; Wenzel J; Kuschinsky K; Krieglstein J
    Brain Res; 1989 Sep; 497(2):205-13. PubMed ID: 2684341
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sequential metabolic changes in rat brain following middle cerebral artery occlusion: a 2-deoxyglucose study.
    Shiraishi K; Sharp FR; Simon RP
    J Cereb Blood Flow Metab; 1989 Dec; 9(6):765-73. PubMed ID: 2584273
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The mechanism of action and pharmacological specificity of the anticonvulsant NMDA antagonist MK-801: a voltage clamp study on neuronal cells in culture.
    Halliwell RF; Peters JA; Lambert JJ
    Br J Pharmacol; 1989 Feb; 96(2):480-94. PubMed ID: 2647206
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential glucose utilization in the parafascicular region during slow-wave sleep, the still-alert state and locomotion.
    Pavlides C; Aoki C; Chen JS; Bailey WH; Winson J
    Brain Res; 1987 Oct; 423(1-2):399-402. PubMed ID: 3676818
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat.
    Sokoloff L; Reivich M; Kennedy C; Des Rosiers MH; Patlak CS; Pettigrew KD; Sakurada O; Shinohara M
    J Neurochem; 1977 May; 28(5):897-916. PubMed ID: 864466
    [No Abstract]   [Full Text] [Related]  

  • 49. NMDA Receptor-dependent increase of cerebral glucose utilization after hypoxia-ischemia in the immature rat.
    Gilland E; Hagberg H
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):1005-13. PubMed ID: 8784246
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cholinergic denervation of the hippocampal formation does not produce long-term changes in glucose metabolism.
    Harrell LE; Davis JN
    Exp Neurol; 1984 Jul; 85(1):128-38. PubMed ID: 6734774
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Local cerebral glucose utilization in two models of B12 deficiency.
    Hakim AM; Cooper BA; Rosenblatt DS; Pappius HM
    J Neurochem; 1983 Apr; 40(4):1155-60. PubMed ID: 6834046
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anticonvulsant effects of MK-801 and glycine on hippocampal afterdischarge.
    Peterson SL; Boehnke LE
    Exp Neurol; 1989 May; 104(2):113-7. PubMed ID: 2651137
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bilateral [14C]2-deoxyglucose uptake by motor pathways after unilateral neonatal cortex lesions in the rat.
    Sharp FR; Evans KL
    Brain Res; 1982 Dec; 282(1):1-11. PubMed ID: 6186341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The distribution of alterations in energy metabolism in the rat brain produced by apomorphine.
    McCulloch J; Savaki HE; McCulloch MC; Jehle J; Sokoloff L
    Brain Res; 1982 Jul; 243(1):67-80. PubMed ID: 7116159
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regional brain glucose metabolism and blood flow in streptozocin-induced diabetic rats.
    Jakobsen J; Nedergaard M; Aarslew-Jensen M; Diemer NH
    Diabetes; 1990 Apr; 39(4):437-40. PubMed ID: 2318347
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Limbic brain structures are important sites of kappa-opioid receptor-mediated actions in the rat: a [14C]-2-deoxyglucose study.
    Ableitner A; Herz A
    Brain Res; 1989 Jan; 478(2):326-36. PubMed ID: 2538203
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regional cerebral glucose utilization measured with the 2--[ 14C] deoxyglucose technique: its use in mapping functional activity in the nervous system.
    Sokoloff L
    Acta Neurol Scand Suppl; 1980; 78():128-46. PubMed ID: 6945030
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Decreases of cortical and thalamic glucose metabolism produced by parietal cortex stimulation in the rat.
    Sharp JW; Gonzalez MF; Morton MT; Simon RP; Sharp FR
    Brain Res; 1988 Jan; 438(1-2):357-62. PubMed ID: 3345443
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic activity in striate and extrastriate cortex in the hooded rat: contralateral and ipsilateral eye input.
    Thurlow GA; Cooper RM
    J Comp Neurol; 1988 Aug; 274(4):595-607. PubMed ID: 3220972
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 2-Deoxyglucose incorporation into rat brain glycogen during measurement of local cerebral glucose utilization by the 2-deoxyglucose method.
    Nelson T; Kaufman EE; Sokoloff L
    J Neurochem; 1984 Oct; 43(4):949-56. PubMed ID: 6470715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.