BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2202491)

  • 1. Preferential histochemical staining of protoplasmic and fibrous astrocytes in rat CNS with GFAP antibodies using different fixatives.
    Shehab SA; Cronly-Dillon JR; Nona SN; Stafford CA
    Brain Res; 1990 Jun; 518(1-2):347-52. PubMed ID: 2202491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of glial fibrillary acidic protein and vimentin immunoreactivity during rat visual cortex development.
    Stichel CC; Müller CM; Zilles K
    J Neurocytol; 1991 Feb; 20(2):97-108. PubMed ID: 2027041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunocytochemical characterization of a new marker of fibrous and reactive astrocytes.
    Ridet JL; Alonso G; Chauvet N; Chapron J; Koenig J; Privat A
    Cell Tissue Res; 1996 Jan; 283(1):39-49. PubMed ID: 8581958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes in the rat brain. II. Mesencephalon, rhombencephalon and spinal cord.
    Hajós F; Kálmán M
    Exp Brain Res; 1989; 78(1):164-73. PubMed ID: 2591510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miRNAs are required for the terminal differentiation of white matter astrocytes in the developing CNS.
    Li X; Chen Y; Chi Q; Hu X; Xu X; Zhang Z; Qiu M; Zheng K
    Neuroscience; 2016 Jan; 312():99-107. PubMed ID: 26556063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of glial fibrillary acidic protein immunohistochemistry in the quantification of astrocytes in the rat brain.
    Faddis BT; Vijayan VK
    Am J Anat; 1988 Dec; 183(4):316-22. PubMed ID: 3218620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fixation-dependent vimentin immunoreactivity of mono- and polyclonal antibodies in brain tissue of cattle, rabbits, rats and mice.
    Urban K; Hewicker-Trautwein M
    Acta Histochem; 1994 Dec; 96(4):365-77. PubMed ID: 7536376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glial fibrillary acidic protein-immunopositive structures in the brain of a Crocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia.
    Kálmán M; Pritz MB
    J Comp Neurol; 2001 Mar; 431(4):460-80. PubMed ID: 11223815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glioarchitectonics of the rat spinal cord.
    Bodega G; Fernandez B; Suarez I; Gianonatti C
    J Hirnforsch; 1986; 27(5):577-85. PubMed ID: 2432121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunohistochemistry of glial fibrillary acidic protein, vimentin and S-100 protein for study of astrocytes in hippocampus of rat.
    Schmidt-Kastner R; Szymas J
    J Chem Neuroanat; 1990; 3(3):179-92. PubMed ID: 2363851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cell surface antigen expressed by astrocytes and their precursors.
    Szigeti V; Miller RH
    Glia; 1993 May; 8(1):20-32. PubMed ID: 7685323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An immunohistochemical study of the topography and cellular localization of three neural proteins in the sheep nervous system.
    Jeffrey M; Wells GA; Bridges AW
    J Comp Pathol; 1990 Jul; 103(1):23-35. PubMed ID: 1697610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunocytochemical double labeling of glial fibrillary acidic protein and transferrin permits the identification of astrocytes and oligodendrocytes in the rat brain.
    Martin SM; Landel HB; Lansing AJ; Vijayan VK
    J Neuropathol Exp Neurol; 1991 Mar; 50(2):161-70. PubMed ID: 1707090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glial fibrillary acidic protein (GFAP) immunoreactivity in rabbit retina: effect of fixation.
    Vaughan DK; Erickson PA; Fisher SK
    Exp Eye Res; 1990 Apr; 50(4):385-92. PubMed ID: 2186920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A double staining technique for simultaneous demonstration of astrocytes and microglia in brain sections and astroglial cell cultures.
    Castellano B; González B; Jensen MB; Pedersen EB; Finsen BR; Zimmer J
    J Histochem Cytochem; 1991 May; 39(5):561-8. PubMed ID: 1707903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of glial fibrillary acidic protein and astroglial architecture in the brain of a continuously growing fish, the rainbow trout.
    Alunni A; Vaccari S; Torcia S; Meomartini ME; Nicotra A; Alfei L
    Eur J Histochem; 2005; 49(2):157-66. PubMed ID: 15967744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunocytochemical localization of carbonic anhydrase in the spinal cords of normal and mutant (shiverer) adult mice with comparisons among fixation methods.
    Cammer W; Sacchi R; Sapirstein V
    J Histochem Cytochem; 1985 Jan; 33(1):45-54. PubMed ID: 3917467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vimentin-GFAP transition in primary dissociated cultures of rat embryo spinal cord.
    Bignami A; Dahl D
    Int J Dev Neurosci; 1989; 7(4):343-57. PubMed ID: 2773670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-specific hyaluronate-binding protein. A product of white matter astrocytes?
    Bignami A; Dahl D
    J Neurocytol; 1986 Oct; 15(5):671-9. PubMed ID: 2430070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of brain-specific hyaluronectin (BHN), a hyaluronate-binding protein, in dog postnatal development.
    Bignami A; Dahl D
    Exp Neurol; 1988 Jan; 99(1):107-17. PubMed ID: 2446903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.