BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22025094)

  • 1. On chip electrofusion of single human B cells and mouse myeloma cells for efficient hybridoma generation.
    Kemna EW; Wolbers F; Vermes I; van den Berg A
    Electrophoresis; 2011 Nov; 32(22):3138-46. PubMed ID: 22025094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electro Cell Fusion for Hybridoma Production.
    Greenfield EA
    Cold Spring Harb Protoc; 2019 Oct; 2019(10):. PubMed ID: 31575798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly controlled electrofusion of individually selected cells in dielectrophoretic field cages.
    Kirschbaum M; Guernth-Marschner CR; Cherré S; de Pablo Peña A; Jaeger MS; Kroczek RA; Schnelle T; Mueller T; Duschl C
    Lab Chip; 2012 Feb; 12(3):443-50. PubMed ID: 22124613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrofusion of single cells in picoliter droplets.
    Schoeman RM; van den Beld WTE; Kemna EWM; Wolbers F; Eijkel JCT; van den Berg A
    Sci Rep; 2018 Feb; 8(1):3714. PubMed ID: 29487332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microorifice-based high-yield cell fusion on microfluidic chip: electrofusion of selected pairs and fusant viability.
    Gel M; Suzuki S; Kimura Y; Kurosawa O; Techaumnat B; Oana H; Washizu M
    IEEE Trans Nanobioscience; 2009 Dec; 8(4):300-5. PubMed ID: 20142145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of specific human mab's by a small scale electrofusion technique: the influence of some physical and chemical factors on hybridoma yield of human peripheral blood lymphocytes XCB-F7 fusions.
    Glaser RW; Jahn S; Grunow R
    Allerg Immunol (Leipz); 1989; 35(2):123-32. PubMed ID: 2788981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased human hybridoma formation by electrofusion of human B cells with heteromyeloma SPAM-8 cells.
    Panova I; Gustafsson B
    Hybridoma; 1995 Jun; 14(3):265-9. PubMed ID: 7590790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient generation of stable antibody forming hybridoma cells by electrofusion.
    Schmitt JJ; Zimmermann U; Neil GA
    Hybridoma; 1989 Feb; 8(1):107-15. PubMed ID: 2925206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell activation by CpG ODN leads to improved electrofusion in hybridoma production.
    Kato M; Sasamori E; Chiba T; Hanyu Y
    J Immunol Methods; 2011 Oct; 373(1-2):102-10. PubMed ID: 21878337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-throughput dielectrophoresis-based cell electrofusion microfluidic device.
    Hu N; Yang J; Yin ZQ; Ai Y; Qian S; Svir IB; Xia B; Yan JW; Hou WS; Zheng XL
    Electrophoresis; 2011 Sep; 32(18):2488-95. PubMed ID: 21853446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution analyses of cell fusion dynamics in a biochip.
    Mottet G; Le Pioufle B; Mir LM
    Electrophoresis; 2012 Aug; 33(16):2508-15. PubMed ID: 22899258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of bulk cell electrofusion in vitro for production of human-mouse heterohybridoma cells.
    Trontelj K; Rebersek M; Kanduser M; Serbec VC; Sprohar M; Miklavcic D
    Bioelectrochemistry; 2008 Nov; 74(1):124-9. PubMed ID: 18667367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybridoma technologies for antibody production.
    Tomita M; Tsumoto K
    Immunotherapy; 2011 Mar; 3(3):371-80. PubMed ID: 21395379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient electric field-induced generation of hybridomas from human B lymphocytes without prior activation in vitro.
    Kwekkeboom J; de Groot C; Tager JM
    Hum Antibodies Hybridomas; 1992 Jan; 3(1):48-53. PubMed ID: 1576322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectrophoresis-assisted massively parallel cell pairing and fusion based on field constriction created by a micro-orifice array sheet.
    Kimura Y; Gel M; Techaumnat B; Oana H; Kotera H; Washizu M
    Electrophoresis; 2011 Sep; 32(18):2496-501. PubMed ID: 21874655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic approach towards hybridoma generation for cancer immunotherapy.
    Lu YT; Pendharkar GP; Lu CH; Chang CM; Liu CH
    Oncotarget; 2015 Nov; 6(36):38764-76. PubMed ID: 26462149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Establishment of hybridoma secreting anti-mycobacteria monoclonal antibody by using electrofusion technique].
    Guo M; Pan Z; Wang H
    Wei Sheng Wu Xue Bao; 1998 Oct; 38(5):393-5. PubMed ID: 12549406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscale production of hybridomas by hypo-osmolar electrofusion.
    Zimmermann U; Klöck G; Gessner P; Sammons DW; Neil GA
    Hum Antibodies Hybridomas; 1992 Jan; 3(1):14-8. PubMed ID: 1576318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrofusion by a bipolar pulsed electric field: Increased cell fusion efficiency for monoclonal antibody production.
    Ke Q; Li C; Wu M; Ge L; Yao C; Yao C; Mi Y
    Bioelectrochemistry; 2019 Jun; 127():171-179. PubMed ID: 30831355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The generation of Ig-secreting UC 729-6 derived human hybridomas by electrofusion.
    Pratt M; Mikhalev A; Glassy MC
    Hybridoma; 1987 Oct; 6(5):469-77. PubMed ID: 3500113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.