These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 220263)

  • 1. A kinetic study of the formation of ordered complexes of ferric cytochrome c fragments.
    Parr GR; Taniuchi H
    J Biol Chem; 1979 Jun; 254(11):4836-42. PubMed ID: 220263
    [No Abstract]   [Full Text] [Related]  

  • 2. An investigation of ordered complex formation with chemically modified fragments of cytochrome c. The role of heme iron.
    Parr GR; Taniuchi H
    J Biol Chem; 1980 Mar; 255(6):2616-23. PubMed ID: 6244286
    [No Abstract]   [Full Text] [Related]  

  • 3. Ordered complexes of cytochrome c fragments. Kinetics of formation of the reduced (ferrous) forms.
    Parr GR; Taniuchi H
    J Biol Chem; 1981 Jan; 256(1):125-32. PubMed ID: 6256341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of two alternative complementing structures from cytochrome c heme fragment (residue 1 to 38) and the apoprotein.
    Parr GR; Hantgan RR; Taniuchi H
    J Biol Chem; 1978 Aug; 253(15):5381-8. PubMed ID: 209038
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of methylation on cytochrome c fragment complementation.
    Brems DN; Stellwagen E
    J Biol Chem; 1981 Nov; 256(22):11688-90. PubMed ID: 6271757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic intermediates in the formation of ordered complexes from cytochrome c fragments. Evidence that methionine ligation is a late event in the folding process.
    Parr GR; Taniuchi H
    J Biol Chem; 1980 Sep; 255(18):8914-8. PubMed ID: 6251068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thermodynamic study of ordered complexes of cytochrome c fragments. Kinetic and equilibrium measurements and comparison with the folding of the intact protein.
    Parr GR; Taniuchi H
    J Biol Chem; 1982 Sep; 257(17):10103-11. PubMed ID: 6286639
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on the heme environment of horse heart ferric cytochrome c. Azide and imidazole complexes of ferric cytochrome c.
    Ikeda-Saito M; Iizuka T
    Biochim Biophys Acta; 1975 Jun; 393(2):335-42. PubMed ID: 167834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramolecular flip between two alternative forms of complex formed from a heme fragment and apoprotein of horse cytochrome c.
    Juillerat MA; Taniuchi H
    J Biol Chem; 1987 Oct; 262(28):13440-8. PubMed ID: 2820970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A kinetic study of the pH-dependent properties of the ferric undecapeptide of cytochrome c (microperoxidase).
    Wilson MT; Ranson RJ; Masiakowski P; Czarnecka E; Brunori M
    Eur J Biochem; 1977 Jul; 77(1):193-9. PubMed ID: 20304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of a biologically active, ordered complex from two overlapping fragments of cytochrome c.
    Hantgan RR; Taniuchi H
    J Biol Chem; 1977 Feb; 252(4):1367-74. PubMed ID: 190231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and spectroscopic evidence for different forms of ferric cytochrome c at very low ionic strength and neutral pH.
    Goldkorn T; Schejter A
    FEBS Lett; 1977 Mar; 75(1):44-6. PubMed ID: 15867
    [No Abstract]   [Full Text] [Related]  

  • 13. Azide binding to the cytochrome c ferric heme octapeptide. A model for anion binding to the active site of high spin ferric heme proteins.
    Blumenthal DC; Kassner RJ
    J Biol Chem; 1979 Oct; 254(19):9617-20. PubMed ID: 226523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanide binding to the cytochrome c ferric heme octapeptide. A model for anion binding to the active site of high spin ferric heme proteins.
    Blumenthal DC; Kassner RJ
    J Biol Chem; 1980 Jun; 255(12):5859-63. PubMed ID: 6247350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The heme iron coordination of unfolded ferric and ferrous cytochrome c in neutral and acidic urea solutions. Spectroscopic and electrochemical studies.
    Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH
    Biochim Biophys Acta; 2004 Dec; 1703(1):31-41. PubMed ID: 15588700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic studies on the conformation of cytochrome c and apocytochrome c.
    Cohen JS; Fisher WR; Schechter AN
    J Biol Chem; 1974 Feb; 249(4):1113-8. PubMed ID: 4360675
    [No Abstract]   [Full Text] [Related]  

  • 17. Kinetic study of isomerization of ferricytochrome c at alkaline pH.
    Kihara H; Saigo S; Nakatani H; Hiromi K; Ikeda-Saito M; Iizuka T
    Biochim Biophys Acta; 1976 May; 430(2):225-43. PubMed ID: 6059
    [No Abstract]   [Full Text] [Related]  

  • 18. Cytochrome c interaction with membranes. Interaction of cytochrome c with isolated membrane fragments and purified enzymes.
    Vanderkooi J; Erecińska M
    Arch Biochem Biophys; 1974 Jun; 162(2):385-91. PubMed ID: 4366145
    [No Abstract]   [Full Text] [Related]  

  • 19. On the role of heme in the formation of the structure of cytochrome c.
    Fisher WR; Taniuchi H; Anfinsen CB
    J Biol Chem; 1973 May; 248(9):3188-95. PubMed ID: 4349479
    [No Abstract]   [Full Text] [Related]  

  • 20. The degradation of cytochrome c by hydrogen peroxide.
    Florence TM
    J Inorg Biochem; 1985 Feb; 23(2):131-41. PubMed ID: 2983016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.