BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22026407)

  • 1. A caged, localizable rhodamine derivative for superresolution microscopy.
    Banala S; Maurel D; Manley S; Johnsson K
    ACS Chem Biol; 2012 Feb; 7(2):289-93. PubMed ID: 22026407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeling Strategies Matter for Super-Resolution Microscopy: A Comparison between HaloTags and SNAP-tags.
    Erdmann RS; Baguley SW; Richens JH; Wissner RF; Xi Z; Allgeyer ES; Zhong S; Thompson AD; Lowe N; Butler R; Bewersdorf J; Rothman JE; St Johnston D; Schepartz A; Toomre D
    Cell Chem Biol; 2019 Apr; 26(4):584-592.e6. PubMed ID: 30745239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Masked rhodamine dyes of five principal colors revealed by photolysis of a 2-diazo-1-indanone caging group: synthesis, photophysics, and light microscopy applications.
    Belov VN; Mitronova GY; Bossi ML; Boyarskiy VP; Hebisch E; Geisler C; Kolmakov K; Wurm CA; Willig KI; Hell SW
    Chemistry; 2014 Oct; 20(41):13162-73. PubMed ID: 25196166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conjugates of a photoactivated rhodamine with biopolymers for cell staining.
    Zaitsev SY; Shaposhnikov MN; Solovyeva DO; Solovyeva VV; Rizvanov AA
    ScientificWorldJournal; 2014; 2014():285405. PubMed ID: 25383365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitroso-Caged Rhodamine: A Superior Green Light-Activatable Fluorophore for Single-Molecule Localization Super-Resolution Imaging.
    Zheng Y; Ye Z; Liu Z; Yang W; Zhang X; Yang Y; Xiao Y
    Anal Chem; 2021 Jun; 93(22):7833-7842. PubMed ID: 34027666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced dyes enhance single-molecule localization density for live superresolution imaging.
    Carlini L; Benke A; Reymond L; Lukinavičius G; Manley S
    Chemphyschem; 2014 Mar; 15(4):750-5. PubMed ID: 24554553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicolor protein labeling in living cells using mutant β-lactamase-tag technology.
    Watanabe S; Mizukami S; Hori Y; Kikuchi K
    Bioconjug Chem; 2010 Dec; 21(12):2320-6. PubMed ID: 20961132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of optimal rhodamine fluorophore for in vivo optical imaging.
    Longmire MR; Ogawa M; Hama Y; Kosaka N; Regino CA; Choyke PL; Kobayashi H
    Bioconjug Chem; 2008 Aug; 19(8):1735-42. PubMed ID: 18610943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of protein turnover by quantitative SNAP-based pulse-chase imaging.
    Bodor DL; Rodríguez MG; Moreno N; Jansen LE
    Curr Protoc Cell Biol; 2012 Jun; Chapter 8():Unit8.8. PubMed ID: 23129118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and Characterization of ROSA Dye - A Rhodamine B-type Fluorophore, Suitable for Bioconjugation and Fluorescence Studies in Live Cells.
    Rubio V; Iragavarapu V; Stawikowski MJ
    Protein Pept Lett; 2019; 26(10):758-767. PubMed ID: 31215362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of fluorophores to label SNAP-tag fused proteins for multicolor single-molecule tracking microscopy in live cells.
    Bosch PJ; Corrêa IR; Sonntag MH; Ibach J; Brunsveld L; Kanger JS; Subramaniam V
    Biophys J; 2014 Aug; 107(4):803-14. PubMed ID: 25140415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caged Q-rhodamine dextran: a new photoactivated fluorescent tracer.
    Gee KR; Weinberg ES; Kozlowski DJ
    Bioorg Med Chem Lett; 2001 Aug; 11(16):2181-3. PubMed ID: 11514165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoactivatable Carbo- and Silicon-Rhodamines and Their Application in MINFLUX Nanoscopy.
    Aktalay A; Khan TA; Bossi ML; Belov VN; Hell SW
    Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202302781. PubMed ID: 37555720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-Resolution Microscopy.
    Grimm JB; Klein T; Kopek BG; Shtengel G; Hess HF; Sauer M; Lavis LD
    Angew Chem Int Ed Engl; 2016 Jan; 55(5):1723-7. PubMed ID: 26661345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodamines with a Chloronicotinic Acid Fragment for Live Cell Superresolution STED Microscopy*.
    Grimm F; Rehman J; Stoldt S; Khan TA; Schlötel JG; Nizamov S; John M; Belov VN; Hell SW
    Chemistry; 2021 Apr; 27(19):6070-6076. PubMed ID: 33496998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly selective fluorescence turn-on chemodosimeter based on rhodamine for nanomolar detection of copper ions.
    Kumar M; Kumar N; Bhalla V; Sharma PR; Kaur T
    Org Lett; 2012 Jan; 14(1):406-9. PubMed ID: 22172077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorogenic and Cell-Permeable Rhodamine Dyes for High-Contrast Live-Cell Protein Labeling in Bioimaging and Biosensing.
    Si D; Li Q; Bao Y; Zhang J; Wang L
    Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202307641. PubMed ID: 37483077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorophore:dendrimer ratio impacts cellular uptake and intracellular fluorescence lifetime.
    Dougherty CA; Vaidyanathan S; Orr BG; Banaszak Holl MM
    Bioconjug Chem; 2015 Feb; 26(2):304-15. PubMed ID: 25625297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quenched substrates for live-cell labeling of SNAP-tagged fusion proteins with improved fluorescent background.
    Stöhr K; Siegberg D; Ehrhard T; Lymperopoulos K; Öz S; Schulmeister S; Pfeifer AC; Bachmann J; Klingmüller U; Sourjik V; Herten DP
    Anal Chem; 2010 Oct; 82(19):8186-93. PubMed ID: 20815338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-numerical-aperture cryogenic light microscopy for increased precision of superresolution reconstructions.
    Nahmani M; Lanahan C; DeRosier D; Turrigiano GG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3832-3836. PubMed ID: 28348224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.