These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

771 related articles for article (PubMed ID: 22026626)

  • 1. Design properties of hydrogel tissue-engineering scaffolds.
    Zhu J; Marchant RE
    Expert Rev Med Devices; 2011 Sep; 8(5):607-26. PubMed ID: 22026626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering.
    Zhu J
    Biomaterials; 2010 Jun; 31(17):4639-56. PubMed ID: 20303169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides.
    Abbadessa A; Mouser VHM; Blokzijl MM; Gawlitta D; Dhert WJA; Hennink WE; Malda J; Vermonden T
    Biomacromolecules; 2016 Jun; 17(6):2137-2147. PubMed ID: 27171342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.
    Zhang X; Xu B; Puperi DS; Yonezawa AL; Wu Y; Tseng H; Cuchiara ML; West JL; Grande-Allen KJ
    Acta Biomater; 2015 Mar; 14():11-21. PubMed ID: 25433168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides.
    Zhu J; Tang C; Kottke-Marchant K; Marchant RE
    Bioconjug Chem; 2009 Feb; 20(2):333-9. PubMed ID: 19191566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering.
    Chung HJ; Park TG
    Adv Drug Deliv Rev; 2007 May; 59(4-5):249-62. PubMed ID: 17482310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering.
    Landers R; Hübner U; Schmelzeisen R; Mülhaupt R
    Biomaterials; 2002 Dec; 23(23):4437-47. PubMed ID: 12322962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering synthetic hydrogel microenvironments to instruct stem cells.
    Guvendiren M; Burdick JA
    Curr Opin Biotechnol; 2013 Oct; 24(5):841-6. PubMed ID: 23545441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering.
    Hwang CM; Sant S; Masaeli M; Kachouie NN; Zamanian B; Lee SH; Khademhosseini A
    Biofabrication; 2010 Sep; 2(3):035003. PubMed ID: 20823504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering.
    Hu M; Yang J; Xu J
    Drug Deliv; 2021 Dec; 28(1):607-619. PubMed ID: 33739203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering.
    Schmedlen RH; Masters KS; West JL
    Biomaterials; 2002 Nov; 23(22):4325-32. PubMed ID: 12219822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular matrix-mimetic poly(ethylene glycol) hydrogels engineered to regulate smooth muscle cell proliferation in 3-D.
    Lin L; Marchant RE; Zhu J; Kottke-Marchant K
    Acta Biomater; 2014 Dec; 10(12):5106-5115. PubMed ID: 25173839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogel biomaterials: a smart future?
    Kopecek J
    Biomaterials; 2007 Dec; 28(34):5185-92. PubMed ID: 17697712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning hydrogel properties for applications in tissue engineering.
    Khetan S; Chung C; Burdick JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2094-6. PubMed ID: 19963530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic poly(ethylene glycol)-based hydrogels as scaffolds for inducing endothelial adhesion and capillary-like network formation.
    Zhu J; He P; Lin L; Jones DR; Marchant RE
    Biomacromolecules; 2012 Mar; 13(3):706-13. PubMed ID: 22296572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal changes in peg hydrogel structure influence human mesenchymal stem cell proliferation and matrix mineralization.
    Nuttelman CR; Kloxin AM; Anseth KS
    Adv Exp Med Biol; 2006; 585():135-49. PubMed ID: 17120782
    [No Abstract]   [Full Text] [Related]  

  • 19. Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering.
    Grover GN; Rao N; Christman KL
    Nanotechnology; 2014 Jan; 25(1):014011. PubMed ID: 24334615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells.
    Parmar PA; Skaalure SC; Chow LW; St-Pierre JP; Stoichevska V; Peng YY; Werkmeister JA; Ramshaw JA; Stevens MM
    Biomaterials; 2016 Aug; 99():56-71. PubMed ID: 27214650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.