These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22026720)

  • 21. Evaluation of Mg[B(HFIP)
    Dlugatch B; Mohankumar M; Attias R; Krishna BM; Elias Y; Gofer Y; Zitoun D; Aurbach D
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):54894-54905. PubMed ID: 34780145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A theoretical study on Na
    Liu Q; Wu F; Mu D; Wu B
    Phys Chem Chem Phys; 2020 Jan; 22(4):2164-2175. PubMed ID: 31912812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidating the beneficial effect of vinylene carbonate on the electrochemistry of antimony electrodes in lithium batteries.
    Martín F; Morales J; Sánchez L
    Chemphyschem; 2008 Dec; 9(17):2610-7. PubMed ID: 18988210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal utilization of fluoroethylene carbonate in potassium ion batteries.
    Zhang C; Chen J; Yin X; Sun Y; Yang W; Yu F; Liu X; Fu L; Chen Y; Wu Y
    Chem Commun (Camb); 2021 Feb; 57(13):1607-1610. PubMed ID: 33443497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.
    Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S
    J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mass spectrometry investigations on electrolyte degradation products for the development of nanocomposite electrodes in lithium ion batteries.
    Gireaud L; Grugeon S; Pilard S; Guenot P; Tarascon JM; Laruelle S
    Anal Chem; 2006 Jun; 78(11):3688-98. PubMed ID: 16737225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prototype systems for rechargeable magnesium batteries.
    Aurbach D; Lu Z; Schechter A; Gofer Y; Gizbar H; Turgeman R; Cohen Y; Moshkovich M; Levi E
    Nature; 2000 Oct; 407(6805):724-7. PubMed ID: 11048714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6/EC:EMC electrolyte.
    Zhuang GV; Xu K; Yang H; Jow TR; Ross PN
    J Phys Chem B; 2005 Sep; 109(37):17567-73. PubMed ID: 16853247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanozeolite ZSM-5 electrolyte additive for long life sodium-ion batteries.
    Chen L; Kishore B; Walker M; Dancer CEJ; Kendrick E
    Chem Commun (Camb); 2020 Oct; 56(78):11609-11612. PubMed ID: 32869777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies of the interfacial properties of an electroplated Sn thin film electrode/electrolyte using in situ MFTIRS and EQCM.
    Li JT; Chen SR; Fan XY; Huang L; Sun SG
    Langmuir; 2007 Dec; 23(26):13174-80. PubMed ID: 18020462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rechargeable Fe(III/VI) super-iron cathodes.
    Licht S; Tel-Vered R
    Chem Commun (Camb); 2004 Mar; (6):628-9. PubMed ID: 15010752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: Application in rechargeable zinc batteries.
    Venkata Narayanan NS; Ashokraj BV; Sampath S
    J Colloid Interface Sci; 2010 Feb; 342(2):505-12. PubMed ID: 19914628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations.
    Pour N; Gofer Y; Major DT; Aurbach D
    J Am Chem Soc; 2011 Apr; 133(16):6270-8. PubMed ID: 21456525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct in situ observation of dynamic transport for electrolyte components by NMR combined with electrochemical measurements.
    Hayamizu K; Seki S; Miyashiro H; Kobayashi Y
    J Phys Chem B; 2006 Nov; 110(45):22302-5. PubMed ID: 17091966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes.
    Freunberger SA; Chen Y; Peng Z; Griffin JM; Hardwick LJ; Bardé F; Novák P; Bruce PG
    J Am Chem Soc; 2011 May; 133(20):8040-7. PubMed ID: 21524112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.
    Wang J; Manga KK; Bao Q; Loh KP
    J Am Chem Soc; 2011 Jun; 133(23):8888-91. PubMed ID: 21557613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Al-compatible boron-based electrolytes for rechargeable magnesium batteries.
    Ha JH; Lee B; Lee M; Yim T; Oh SH
    Chem Commun (Camb); 2020 Nov; 56(91):14163-14166. PubMed ID: 33079098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Limitations of disordered carbons obtained from biomass as anodes for real lithium-ion batteries.
    Caballero A; Hernán L; Morales J
    ChemSusChem; 2011 May; 4(5):658-63. PubMed ID: 21567976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.