These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22026779)

  • 61. Dirac cones in two-dimensional systems: from hexagonal to square lattices.
    Liu Z; Wang J; Li J
    Phys Chem Chem Phys; 2013 Nov; 15(43):18855-62. PubMed ID: 24084752
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te3.
    Hirahara T; Bihlmayer G; Sakamoto Y; Yamada M; Miyazaki H; Kimura S; Blügel S; Hasegawa S
    Phys Rev Lett; 2011 Oct; 107(16):166801. PubMed ID: 22107414
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Experimental realization of a three-dimensional Dirac semimetal.
    Borisenko S; Gibson Q; Evtushinsky D; Zabolotnyy V; Büchner B; Cava RJ
    Phys Rev Lett; 2014 Jul; 113(2):027603. PubMed ID: 25062235
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tailoring Dirac Fermions by In-Situ Tunable High-Order Moiré Pattern in Graphene-Monolayer Xenon Heterostructure.
    Wu C; Wan Q; Peng C; Mo S; Li R; Zhao K; Guo Y; Yuan S; Wu F; Zhang C; Xu N
    Phys Rev Lett; 2022 Oct; 129(17):176402. PubMed ID: 36332255
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Anisotropy induced localization of pseudo-relativistic spin states in graphene double quantum wire structures.
    Villegas CE; Tavares MR; Marques GE
    Nanotechnology; 2010 Sep; 21(36):365401. PubMed ID: 20705968
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Highly anisotropic Dirac cones in epitaxial graphene modulated by an island superlattice.
    Rusponi S; Papagno M; Moras P; Vlaic S; Etzkorn M; Sheverdyaeva PM; Pacilé D; Brune H; Carbone C
    Phys Rev Lett; 2010 Dec; 105(24):246803. PubMed ID: 21231546
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Consistent interpretation of the low-temperature magnetotransport in graphite using the Slonczewski-Weiss-McClure 3D band-structure calculations.
    Schneider JM; Orlita M; Potemski M; Maude DK
    Phys Rev Lett; 2009 Apr; 102(16):166403. PubMed ID: 19518732
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Topological aspect and quantum magnetoresistance of β-Ag2Te.
    Zhang W; Yu R; Feng W; Yao Y; Weng H; Dai X; Fang Z
    Phys Rev Lett; 2011 Apr; 106(15):156808. PubMed ID: 21568599
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Quasiballistic transport of Dirac fermions in a Bi2Se3 nanowire.
    Dufouleur J; Veyrat L; Teichgräber A; Neuhaus S; Nowka C; Hampel S; Cayssol J; Schumann J; Eichler B; Schmidt OG; Büchner B; Giraud R
    Phys Rev Lett; 2013 May; 110(18):186806. PubMed ID: 23683235
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identifying Dirac cones in carbon allotropes with square symmetry.
    Wang J; Huang H; Duan W; Liu Z
    J Chem Phys; 2013 Nov; 139(18):184701. PubMed ID: 24320285
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Observation of magnetophonon resonance of Dirac fermions in graphite.
    Yan J; Goler S; Rhone TD; Han M; He R; Kim P; Pellegrini V; Pinczuk A
    Phys Rev Lett; 2010 Nov; 105(22):227401. PubMed ID: 21231420
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Constructing a large variety of Dirac-cone materials in the Bi(1-x)Sb(x) thin film system.
    Tang S; Dresselhaus MS
    Nanoscale; 2012 Dec; 4(24):7786-90. PubMed ID: 23138711
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-energy limit of massless Dirac fermions in multilayer graphene using magneto-optical transmission spectroscopy.
    Plochocka P; Faugeras C; Orlita M; Sadowski ML; Martinez G; Potemski M; Goerbig MO; Fuchs JN; Berger C; de Heer WA
    Phys Rev Lett; 2008 Feb; 100(8):087401. PubMed ID: 18352662
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Interfacial Dirac cones from alternating topological invariant superlattice structures of Bi2Se3.
    Song JH; Jin H; Freeman AJ
    Phys Rev Lett; 2010 Aug; 105(9):096403. PubMed ID: 20868180
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Interplay of Dirac electrons and magnetism in CaMnBi
    Zhang A; Liu C; Yi C; Zhao G; Xia TL; Ji J; Shi Y; Yu R; Wang X; Chen C; Zhang Q
    Nat Commun; 2016 Dec; 7():13833. PubMed ID: 27982036
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Electronic and optical properties of boron-based hybrid monolayers.
    Katoch N; Kumar A; Kumar J; Ahluwalia PK; Pandey R
    Nanotechnology; 2021 Jul; 32(41):. PubMed ID: 34167107
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Out-of-plane momentum and symmetry-dependent energy gap of the pnictide Ba0.6K0.4Fe2As2 superconductor revealed by angle-resolved photoemission spectroscopy.
    Zhang Y; Yang LX; Chen F; Zhou B; Wang XF; Chen XH; Arita M; Shimada K; Namatame H; Taniguchi M; Hu JP; Xie BP; Feng DL
    Phys Rev Lett; 2010 Sep; 105(11):117003. PubMed ID: 20867600
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Anisotropic Friedel oscillations in graphene-like materials: The Dirac point approximation in wave-number dependent quantities revisited.
    Farajollahpour T; Khamouei S; Shateri SS; Phirouznia A
    Sci Rep; 2018 Feb; 8(1):2667. PubMed ID: 29422619
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Interaction of phonons and dirac fermions on the surface of Bi2Se3: a strong Kohn anomaly.
    Zhu X; Santos L; Sankar R; Chikara S; Howard C; Chou FC; Chamon C; El-Batanouny M
    Phys Rev Lett; 2011 Oct; 107(18):186102. PubMed ID: 22107648
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Experimental evidence of a new class of massless fermions.
    Kopciuszyński M; Krawiec M; Żurawek L; Zdyb R
    Nanoscale Horiz; 2020 Apr; 5(4):679-682. PubMed ID: 32226967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.