These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 22026798)

  • 1. Elastic exciton-exciton scattering in photoexcited carbon nanotubes.
    Nguyen DT; Voisin C; Roussignol P; Roquelet C; Lauret JS; Cassabois G
    Phys Rev Lett; 2011 Sep; 107(12):127401. PubMed ID: 22026798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of exciton-electron scattering in doped single-walled carbon nanotubes.
    Konabe S; Matsuda K; Okada S
    Phys Rev Lett; 2012 Nov; 109(18):187403. PubMed ID: 23215327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes.
    Graham MW; Ma YZ; Green AA; Hersam MC; Fleming GR
    J Chem Phys; 2011 Jan; 134(3):034504. PubMed ID: 21261365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal broadening of the J-band in disordered linear molecular aggregates: a theoretical study.
    Heijs DJ; Malyshev VA; Knoester J
    J Chem Phys; 2005 Oct; 123(14):144507. PubMed ID: 16238407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Evidence of Exciton-Exciton Annihilation in Single-Crystalline Organic Metal Halide Nanotube Assemblies.
    Ma YZ; Lin H; Du MH; Doughty B; Ma B
    J Phys Chem Lett; 2018 May; 9(9):2164-2169. PubMed ID: 29637785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton binding energy in semiconducting single-walled carbon nanotubes.
    Ma YZ; Valkunas L; Bachilo SM; Fleming GR
    J Phys Chem B; 2005 Aug; 109(33):15671-4. PubMed ID: 16852986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton formation and annihilation during 1D impact excitation of carbon nanotubes.
    Marty L; Adam E; Albert L; Doyon R; Ménard D; Martel R
    Phys Rev Lett; 2006 Apr; 96(13):136803. PubMed ID: 16712017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron correlation effects on the femtosecond dephasing dynamics of E22 excitons in (6,5) carbon nanotubes.
    Schneck JR; Walsh AG; Green AA; Hersam MC; Ziegler LD; Swan AK
    J Phys Chem A; 2011 Apr; 115(16):3917-23. PubMed ID: 21241060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically tunable organic-inorganic hybrid polaritons with monolayer WS
    Flatten LC; Coles DM; He Z; Lidzey DG; Taylor RA; Warner JH; Smith JM
    Nat Commun; 2017 Jan; 8():14097. PubMed ID: 28094281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton-Scattering-Induced Dephasing in Two-Dimensional Semiconductors.
    Katsch F; Selig M; Knorr A
    Phys Rev Lett; 2020 Jun; 124(25):257402. PubMed ID: 32639791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of exciton dephasing in sidewall-functionalized carbon nanotubes embedded into metallo-dielectric antennas.
    Shayan K; He X; Luo Y; Rabut C; Li X; Hartmann NF; Blackburn JL; Doorn SK; Htoon H; Strauf S
    Nanoscale; 2018 Jul; 10(26):12631-12638. PubMed ID: 29943788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles method of propagation of tightly bound excitons: verifying the exciton band structure of LiF with inelastic x-ray scattering.
    Lee CC; Chen XM; Gan Y; Yeh CL; Hsueh HC; Abbamonte P; Ku W
    Phys Rev Lett; 2013 Oct; 111(15):157401. PubMed ID: 24160627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton-exciton annihilation and relaxation pathways in semiconducting carbon nanotubes.
    Chmeliov J; Narkeliunas J; Graham MW; Fleming GR; Valkunas L
    Nanoscale; 2016 Jan; 8(3):1618-26. PubMed ID: 26689166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes.
    Sarpkaya I; Zhang Z; Walden-Newman W; Wang X; Hone J; Wong CW; Strauf S
    Nat Commun; 2013; 4():2152. PubMed ID: 23845935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room-Temperature Optical Tunability and Inhomogeneous Broadening in 2D-Layered Organic-Inorganic Perovskite Pseudobinary Alloys.
    Lanty G; Jemli K; Wei Y; Leymarie J; Even J; Lauret JS; Deleporte E
    J Phys Chem Lett; 2014 Nov; 5(22):3958-63. PubMed ID: 26276477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of excitons in one-dimensional metallic single-walled carbon nanotubes.
    Wang F; Cho DJ; Kessler B; Deslippe J; Schuck PJ; Louie SG; Zettl A; Heinz TF; Shen YR
    Phys Rev Lett; 2007 Nov; 99(22):227401. PubMed ID: 18233325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.