These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 22026888)

  • 61. Dynamical magnetoelectric phenomena of multiferroic skyrmions.
    Mochizuki M; Seki S
    J Phys Condens Matter; 2015 Dec; 27(50):503001. PubMed ID: 26624202
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Skyrmion motion driven by oscillating magnetic field.
    Moon KW; Kim DH; Je SG; Chun BS; Kim W; Qiu ZQ; Choe SB; Hwang C
    Sci Rep; 2016 Feb; 6():20360. PubMed ID: 26847334
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Skyrmion effect on the relaxation of spin waves in a quantum Hall ferromagnet.
    Fukuoka D; Oto K; Muro K; Hirayama Y; Kumada N
    Phys Rev Lett; 2010 Sep; 105(12):126802. PubMed ID: 20867665
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Skyrmion Phase in MnSi Thin Films Grown on Sapphire by a Conventional Sputtering.
    Choi WY; Bang HW; Chun SH; Lee S; Jung MH
    Nanoscale Res Lett; 2021 Jan; 16(1):7. PubMed ID: 33409649
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hysteretic Responses of Skyrmion Lattices to Electric Fields in Magnetoelectric Cu
    Han MG; Camino F; Vorobyev PA; Garlow J; Rov R; Söhnel T; Seidel J; Mostovoy M; Tretiakov OA; Zhu Y
    Nano Lett; 2023 Aug; 23(15):7143-7149. PubMed ID: 37523664
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Edge states and skyrmion dynamics in nanostripes of frustrated magnets.
    Leonov AO; Mostovoy M
    Nat Commun; 2017 Feb; 8():14394. PubMed ID: 28240226
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Skyrmion Lattice Topological Hall Effect near Room Temperature.
    Leroux M; Stolt MJ; Jin S; Pete DV; Reichhardt C; Maiorov B
    Sci Rep; 2018 Oct; 8(1):15510. PubMed ID: 30341339
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet.
    Kurumaji T; Nakajima T; Hirschberger M; Kikkawa A; Yamasaki Y; Sagayama H; Nakao H; Taguchi Y; Arima TH; Tokura Y
    Science; 2019 Aug; 365(6456):914-918. PubMed ID: 31395744
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Colossal topological Hall effect at the transition between isolated and lattice-phase interfacial skyrmions.
    Raju M; Petrović AP; Yagil A; Denisov KS; Duong NK; Göbel B; Şaşıoğlu E; Auslaender OM; Mertig I; Rozhansky IV; Panagopoulos C
    Nat Commun; 2021 May; 12(1):2758. PubMed ID: 33980841
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Harnessing Skyrmion Hall Effect by Thickness Gradients in Wedge-Shaped Samples of Cubic Helimagnets.
    Shigenaga T; Leonov AO
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513084
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Skyrmion-Anti-Skyrmion Pair Creation by in-Plane Currents.
    Stier M; Häusler W; Posske T; Gurski G; Thorwart M
    Phys Rev Lett; 2017 Jun; 118(26):267203. PubMed ID: 28707922
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect.
    Liang D; DeGrave JP; Stolt MJ; Tokura Y; Jin S
    Nat Commun; 2015 Sep; 6():8217. PubMed ID: 26400204
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Extended Skyrmion phase in epitaxial FeGe(111) thin films.
    Huang SX; Chien CL
    Phys Rev Lett; 2012 Jun; 108(26):267201. PubMed ID: 23005010
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Microwave field frequency and current density modulated skyrmion-chain in nanotrack.
    Ma F; Ezawa M; Zhou Y
    Sci Rep; 2015 Oct; 5():15154. PubMed ID: 26468929
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dynamics of skyrmion in disordered chiral magnet of thin film form.
    Koshibae W; Nagaosa N
    Sci Rep; 2019 Mar; 9(1):5111. PubMed ID: 30911022
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Motion-induced inertial effects and topological phase transitions in skyrmion transport.
    Teixeira AW; Castillo-Sepúlveda S; Rizzi LG; Nunez AS; Troncoso RE; Altbir D; Fonseca JM; Carvalho-Santos VL
    J Phys Condens Matter; 2021 May; 33(26):. PubMed ID: 33902016
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Persistent Skyrmion Lattice of Noninteracting Electrons with Spin-Orbit Coupling.
    Fu J; Penteado PH; Hachiya MO; Loss D; Egues JC
    Phys Rev Lett; 2016 Nov; 117(22):226401. PubMed ID: 27925749
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature.
    Maccariello D; Legrand W; Reyren N; Garcia K; Bouzehouane K; Collin S; Cros V; Fert A
    Nat Nanotechnol; 2018 Mar; 13(3):233-237. PubMed ID: 29379203
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nucleation and annihilation of skyrmions in Mn
    Ludbrook BM; Dubuis G; Puichaud AH; Ruck BJ; Granville S
    Sci Rep; 2017 Oct; 7(1):13620. PubMed ID: 29051573
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets.
    Woo S; Litzius K; Krüger B; Im MY; Caretta L; Richter K; Mann M; Krone A; Reeve RM; Weigand M; Agrawal P; Lemesh I; Mawass MA; Fischer P; Kläui M; Beach GS
    Nat Mater; 2016 May; 15(5):501-6. PubMed ID: 26928640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.