BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22027027)

  • 1. A tetrameric acetylcholinesterase from the parasitic nematode Dictyocaulus viviparus associates with the vertebrate tail proteins PRiMA and ColQ.
    Pezzementi L; Krejci E; Chatonnet A; Selkirk ME; Matthews JB
    Mol Biochem Parasitol; 2012 Jan; 181(1):40-8. PubMed ID: 22027027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tryptophan amphiphilic tetramerization domain-containing acetylcholinesterase from the bovine lungworm, Dictyocaulus viviparus.
    Matthews JB; Lazari O; Davidson AJ; Warren S; Selkirk ME
    Parasitology; 2006 Sep; 133(Pt 3):381-7. PubMed ID: 16719958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylcholinesterase associates differently with its anchoring proteins ColQ and PRiMA.
    Noureddine H; Carvalho S; Schmitt C; Massoulié J; Bon S
    J Biol Chem; 2008 Jul; 283(30):20722-32. PubMed ID: 18511416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The PRiMA-linked cholinesterase tetramers are assembled from homodimers: hybrid molecules composed of acetylcholinesterase and butyrylcholinesterase dimers are up-regulated during development of chicken brain.
    Chen VP; Xie HQ; Chan WKB; Leung KW; Chan GKL; Choi RCY; Bon S; Massoulié J; Tsim KWK
    J Biol Chem; 2010 Aug; 285(35):27265-27278. PubMed ID: 20566626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix.
    Dvir H; Harel M; Bon S; Liu WQ; Vidal M; Garbay C; Sussman JL; Massoulié J; Silman I
    EMBO J; 2004 Nov; 23(22):4394-405. PubMed ID: 15526038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The association of tetrameric acetylcholinesterase with ColQ tail: a block normal mode analysis.
    Zhang D; McCammon JA
    PLoS Comput Biol; 2005 Nov; 1(6):e62. PubMed ID: 16299589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PRiMA directs a restricted localization of tetrameric AChE at synapses.
    Xie HQ; Leung KW; Chen VP; Chan GK; Xu SL; Guo AJ; Zhu KY; Zheng KY; Bi CW; Zhan JY; Chan WK; Choi RC; Tsim KW
    Chem Biol Interact; 2010 Sep; 187(1-3):78-83. PubMed ID: 20178777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of the molecular diversity and functional anchoring of cholinesterases.
    Massoulié J
    Neurosignals; 2002; 11(3):130-43. PubMed ID: 12138250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional control of different acetylcholinesterase subunits in formation and maintenance of vertebrate neuromuscular junctions.
    Tsim KW; Xie HQ; Ting AK; Siow NL; Ling KK; Kong LW
    J Mol Neurosci; 2006; 30(1-2):189-92. PubMed ID: 17192673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylcholinesterase from the invertebrate Ciona intestinalis is capable of assembling into asymmetric forms when co-expressed with vertebrate collagenic tail peptide.
    Frederick A; Tsigelny I; Cohenour F; Spiker C; Krejci E; Chatonnet A; Bourgoin S; Richards G; Allen T; Whitlock MH; Pezzementi L
    FEBS J; 2008 Mar; 275(6):1309-22. PubMed ID: 18279391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mammalian gene of acetylcholinesterase-associated collagen.
    Krejci E; Thomine S; Boschetti N; Legay C; Sketelj J; Massoulié J
    J Biol Chem; 1997 Sep; 272(36):22840-7. PubMed ID: 9278446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of acetylcholinesterase and butyrylcholinesterase in the vertebrates: an atypical butyrylcholinesterase from the Medaka Oryzias latipes.
    Pezzementi L; Nachon F; Chatonnet A
    PLoS One; 2011 Feb; 6(2):e17396. PubMed ID: 21364766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of acetylcholinesterase tetramers by peptidic motifs from the proline-rich membrane anchor, PRiMA: competition between degradation and secretion pathways of heteromeric complexes.
    Noureddine H; Schmitt C; Liu W; Garbay C; Massoulié J; Bon S
    J Biol Chem; 2007 Feb; 282(6):3487-97. PubMed ID: 17158452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elements of the C-terminal t peptide of acetylcholinesterase that determine amphiphilicity, homomeric and heteromeric associations, secretion and degradation.
    Belbeoc'h S; Falasca C; Leroy J; Ayon A; Massoulié J; Bon S
    Eur J Biochem; 2004 Apr; 271(8):1476-87. PubMed ID: 15066173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PRiMA: the membrane anchor of acetylcholinesterase in the brain.
    Perrier AL; Massoulié J; Krejci E
    Neuron; 2002 Jan; 33(2):275-85. PubMed ID: 11804574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinesterases regulation in the absence of ColQ.
    Sigoillot SM; Bourgeois F; Legay C
    Chem Biol Interact; 2010 Sep; 187(1-3):84-9. PubMed ID: 20153305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The assembly of proline-rich membrane anchor (PRiMA)-linked acetylcholinesterase enzyme: glycosylation is required for enzymatic activity but not for oligomerization.
    Chen VP; Choi RC; Chan WK; Leung KW; Guo AJ; Chan GK; Luk WK; Tsim KW
    J Biol Chem; 2011 Sep; 286(38):32948-61. PubMed ID: 21795704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The C-terminal peptides of acetylcholinesterase: cellular trafficking, oligomerization and functional anchoring.
    Massoulié J; Bon S; Perrier N; Falasca C
    Chem Biol Interact; 2005 Dec; 157-158():3-14. PubMed ID: 16257397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trimerization domain of the collagen tail of acetylcholinesterase.
    Bon S; Ayon A; Leroy J; Massoulié J
    Neurochem Res; 2003 Apr; 28(3-4):523-35. PubMed ID: 12675141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-linked glycosylation of proline-rich membrane anchor (PRiMA) is not required for assembly and trafficking of globular tetrameric acetylcholinesterase.
    Chan WK; Chen VP; Luk WK; Choi RC; Tsim KW
    Neurosci Lett; 2012 Aug; 523(1):71-5. PubMed ID: 22750213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.