BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 22027085)

  • 41. Common and unique components of inhibition and working memory: an fMRI, within-subjects investigation.
    McNab F; Leroux G; Strand F; Thorell L; Bergman S; Klingberg T
    Neuropsychologia; 2008 Sep; 46(11):2668-82. PubMed ID: 18573510
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ERP and fMRI correlates of endogenous and exogenous focusing of visual-spatial attention.
    Natale E; Marzi CA; Girelli M; Pavone EF; Pollmann S
    Eur J Neurosci; 2006 May; 23(9):2511-21. PubMed ID: 16706858
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mentalizing impairment in schizophrenia: a functional MRI study.
    Das P; Lagopoulos J; Coulston CM; Henderson AF; Malhi GS
    Schizophr Res; 2012 Feb; 134(2-3):158-64. PubMed ID: 21943555
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Alterations in the Ventral Attention Network During the Stop-Signal Task in Children With ADHD: An Event-Related Potential Source Imaging Study.
    Janssen TWP; Heslenfeld DJ; van Mourik R; Geladé K; Maras A; Oosterlaan J
    J Atten Disord; 2018 May; 22(7):639-650. PubMed ID: 25895509
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Voice recognition and altered connectivity in schizophrenic patients with auditory hallucinations.
    Mou X; Bai F; Xie C; Shi J; Yao Z; Hao G; Chen N; Zhang Z
    Prog Neuropsychopharmacol Biol Psychiatry; 2013 Jul; 44():265-70. PubMed ID: 23545112
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hyperactivation of right inferior frontal cortex in young binge drinkers during response inhibition: a follow-up study.
    López-Caneda E; Cadaveira F; Crego A; Gómez-Suárez A; Corral M; Parada M; Caamaño-Isorna F; Rodríguez Holguín S
    Addiction; 2012 Oct; 107(10):1796-808. PubMed ID: 22487028
    [TBL] [Abstract][Full Text] [Related]  

  • 47. It's not too late: the onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm.
    Wessel JR; Aron AR
    Psychophysiology; 2015 Apr; 52(4):472-80. PubMed ID: 25348645
    [TBL] [Abstract][Full Text] [Related]  

  • 48. "Shut up!" An electrophysiological study investigating the neural correlates of vocal inhibition.
    Etchell AC; Sowman PF; Johnson BW
    Neuropsychologia; 2012 Jan; 50(1):129-38. PubMed ID: 22108442
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stopping ability in younger and older adults: Behavioral and event-related potential.
    Hsieh S; Lin YC
    Cogn Affect Behav Neurosci; 2017 Apr; 17(2):348-363. PubMed ID: 27896714
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Response inhibition deficits in externalizing child psychiatric disorders: an ERP-study with the Stop-task.
    Albrecht B; Banaschewski T; Brandeis D; Heinrich H; Rothenberger A
    Behav Brain Funct; 2005 Dec; 1():22. PubMed ID: 16336676
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multi-level comparison of empathy in schizophrenia: an fMRI study of a cartoon task.
    Lee SJ; Kang DH; Kim CW; Gu BM; Park JY; Choi CH; Shin NY; Lee JM; Kwon JS
    Psychiatry Res; 2010 Feb; 181(2):121-9. PubMed ID: 20080395
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sentential negation modulates inhibition in a stop-signal task. Evidence from behavioral and ERP data.
    Beltrán D; Muñetón-Ayala M; de Vega M
    Neuropsychologia; 2018 Apr; 112():10-18. PubMed ID: 29518413
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impulsivity and response modulation deficits in psychopathy: evidence from the ERN and N1.
    Heritage AJ; Benning SD
    J Abnorm Psychol; 2013 Feb; 122(1):215-22. PubMed ID: 22985014
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Investigating inhibition deficit in schizophrenia using task-modulated brain networks.
    Yang H; Di X; Gong Q; Sweeney J; Biswal B
    Brain Struct Funct; 2020 Jun; 225(5):1601-1613. PubMed ID: 32356019
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differences in functional activity between boys with pure oppositional defiant disorder and controls during a response inhibition task: a preliminary study.
    Zhu Y; Ying K; Wang J; Su L; Chen J; Lin F; Cai D; Zhou M; Wu D; Guo C; Wang S
    Brain Imaging Behav; 2014 Dec; 8(4):588-97. PubMed ID: 24390655
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stop task after-effects in schizophrenia: behavioral control adjustments and repetition priming.
    Enticott PG; Upton DJ; Bradshaw JL; Bellgrove MA; Ogloff JR
    Neurocase; 2012; 18(5):405-14. PubMed ID: 22124369
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regional homogeneity of resting state fMRI signals predicts Stop signal task performance.
    Tian L; Ren J; Zang Y
    Neuroimage; 2012 Mar; 60(1):539-44. PubMed ID: 22178814
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Independent component analysis of functional networks for response inhibition: Inter-subject variation in stop signal reaction time.
    Zhang S; Tsai SJ; Hu S; Xu J; Chao HH; Calhoun VD; Li CS
    Hum Brain Mapp; 2015 Sep; 36(9):3289-302. PubMed ID: 26089095
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Time and frequency domain event-related electrical activity associated with response control in schizophrenia.
    Doege K; Kumar M; Bates AT; Das D; Boks MP; Liddle PF
    Clin Neurophysiol; 2010 Oct; 121(10):1760-71. PubMed ID: 20400372
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reconsidering electrophysiological markers of response inhibition in light of trigger failures in the stop-signal task.
    Skippen P; Fulham WR; Michie PT; Matzke D; Heathcote A; Karayanidis F
    Psychophysiology; 2020 Oct; 57(10):e13619. PubMed ID: 32725926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.