BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 22027235)

  • 1. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children.
    Voss MW; Chaddock L; Kim JS; Vanpatter M; Pontifex MB; Raine LB; Cohen NJ; Hillman CH; Kramer AF
    Neuroscience; 2011 Dec; 199():166-76. PubMed ID: 22027235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic Fitness Is Associated With Cognitive Control Strategy in Preadolescent Children.
    Kao SC; Drollette ES; Scudder MR; Raine LB; Westfall DR; Pontifex MB; Hillman CH
    J Mot Behav; 2017; 49(2):150-162. PubMed ID: 27715503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between childhood aerobic fitness and brain functional connectivity.
    Kamijo K; Takeda Y; Takai Y; Haramura M
    Neurosci Lett; 2016 Oct; 632():119-23. PubMed ID: 27585750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children.
    Hillman CH; Buck SM; Themanson JR; Pontifex MB; Castelli DM
    Dev Psychol; 2009 Jan; 45(1):114-29. PubMed ID: 19209995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basal ganglia volume is associated with aerobic fitness in preadolescent children.
    Chaddock L; Erickson KI; Prakash RS; VanPatter M; Voss MW; Pontifex MB; Raine LB; Hillman CH; Kramer AF
    Dev Neurosci; 2010 Aug; 32(3):249-56. PubMed ID: 20693803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic fitness and intra-individual variability of neurocognition in preadolescent children.
    Moore RD; Wu CT; Pontifex MB; O'Leary KC; Scudder MR; Raine LB; Johnson CR; Hillman CH
    Brain Cogn; 2013 Jun; 82(1):43-57. PubMed ID: 23511845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels.
    Tsai CL; Chen FC; Pan CY; Wang CH; Huang TH; Chen TC
    Psychoneuroendocrinology; 2014 Mar; 41():121-31. PubMed ID: 24495613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic fitness and response variability in preadolescent children performing a cognitive control task.
    Wu CT; Pontifex MB; Raine LB; Chaddock L; Voss MW; Kramer AF; Hillman CH
    Neuropsychology; 2011 May; 25(3):333-41. PubMed ID: 21443340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The association between aerobic fitness and congruency sequence effects in preadolescent children.
    Westfall DR; Kao SC; Scudder MR; Pontifex MB; Hillman CH
    Brain Cogn; 2017 Apr; 113():85-92. PubMed ID: 28160688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic fitness and the attentional blink in preadolescent children.
    Wu CT; Hillman CH
    Neuropsychology; 2013 Nov; 27(6):642-53. PubMed ID: 24059445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking the relationship between children's aerobic fitness and cognitive control.
    Scudder MR; Drollette ES; Szabo-Reed AN; Lambourne K; Fenton CI; Donnelly JE; Hillman CH
    Health Psychol; 2016 Sep; 35(9):967-78. PubMed ID: 27089460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the FITKids randomized controlled trial on executive control and brain function.
    Hillman CH; Pontifex MB; Castelli DM; Khan NA; Raine LB; Scudder MR; Drollette ES; Moore RD; Wu CT; Kamijo K
    Pediatrics; 2014 Oct; 134(4):e1063-71. PubMed ID: 25266425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From cognitive motor preparation to visual processing: The benefits of childhood fitness to brain health.
    Berchicci M; Pontifex MB; Drollette ES; Pesce C; Hillman CH; Di Russo F
    Neuroscience; 2015 Jul; 298():211-9. PubMed ID: 25907444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Combined EEG-fNIRS Study Investigating Mechanisms Underlying the Association between Aerobic Fitness and Inhibitory Control in Young Adults.
    Ludyga S; Mücke M; Colledge FMA; Pühse U; Gerber M
    Neuroscience; 2019 Nov; 419():23-33. PubMed ID: 31487542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relation of aerobic fitness to neuroelectric indices of cognitive and motor task preparation.
    Kamijo K; O'Leary KC; Pontifex MB; Themanson JR; Hillman CH
    Psychophysiology; 2010 Sep; 47(5):814-21. PubMed ID: 20345598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interactive effects of physical fitness and acute aerobic exercise on electrophysiological coherence and cognitive performance in adolescents.
    Hogan M; Kiefer M; Kubesch S; Collins P; Kilmartin L; Brosnan M
    Exp Brain Res; 2013 Aug; 229(1):85-96. PubMed ID: 23743717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greater aerobic fitness is associated with more efficient inhibition of task-irrelevant information in preadolescent children.
    Kamijo K; Takeda Y; Takai Y; Haramura M
    Biol Psychol; 2015 Sep; 110():68-74. PubMed ID: 26213125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children.
    Pontifex MB; Raine LB; Johnson CR; Chaddock L; Voss MW; Cohen NJ; Kramer AF; Hillman CH
    J Cogn Neurosci; 2011 Jun; 23(6):1332-45. PubMed ID: 20521857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of aerobic fitness and grip strength with cognitive and academic performance in Arab children.
    Aly M; Hassan MD; Hassan MM; Alibrahim M; Kamijo K
    Prog Brain Res; 2024; 286():107-128. PubMed ID: 38876572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. III. The importance of physical activity and aerobic fitness for cognitive control and memory in children.
    Chaddock-Heyman L; Hillman CH; Cohen NJ; Kramer AF
    Monogr Soc Res Child Dev; 2014 Dec; 79(4):25-50. PubMed ID: 25387414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.