BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 22027299)

  • 1. Review of glucose oxidases and glucose dehydrogenases: a bird's eye view of glucose sensing enzymes.
    Ferri S; Kojima K; Sode K
    J Diabetes Sci Technol; 2011 Sep; 5(5):1068-76. PubMed ID: 22027299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes.
    Okuda-Shimazaki J; Yoshida H; Sode K
    Bioelectrochemistry; 2020 Apr; 132():107414. PubMed ID: 31838457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase.
    Yamashita Y; Ferri S; Huynh ML; Shimizu H; Yamaoka H; Sode K
    Enzyme Microb Technol; 2013 Feb; 52(2):123-8. PubMed ID: 23273282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic Galvanic Redox Potentiometry for In Vivo Biosensing.
    Lu J; Zhuang X; Wei H; Liu R; Ji W; Yu P; Ma W; Mao L
    Anal Chem; 2024 Feb; 96(8):3672-3678. PubMed ID: 38361229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of mutant glucose oxidases with increased dye-mediated dehydrogenase activity.
    Horaguchi Y; Saito S; Kojima K; Tsugawa W; Ferri S; Sode K
    Int J Mol Sci; 2012 Nov; 13(11):14149-57. PubMed ID: 23203056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement.
    Milton RD; Giroud F; Thumser AE; Minteer SD; Slade RC
    Phys Chem Chem Phys; 2013 Nov; 15(44):19371-9. PubMed ID: 24121716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boolean logic gates that use enzymes as input signals.
    Strack G; Pita M; Ornatska M; Katz E
    Chembiochem; 2008 May; 9(8):1260-6. PubMed ID: 18398883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement.
    Babadi AA; Bagheri S; Hamid SB
    Biosens Bioelectron; 2016 May; 79():850-60. PubMed ID: 26785309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and kinetic properties of 5-ethylphenazine-glucose-dehydrogenase-NAD+ conjugate, a semisynthetic glucose oxidase.
    Yomo T; Urabe I; Okada H
    Eur J Biochem; 1991 Sep; 200(3):759-66. PubMed ID: 1915348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes.
    MacAodha D; Ó Conghaile P; Egan B; Kavanagh P; Leech D
    Chemphyschem; 2013 Jul; 14(10):2302-7. PubMed ID: 23788272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme.
    Piumi F; Levasseur A; Navarro D; Zhou S; Mathieu Y; Ropartz D; Ludwig R; Faulds CB; Record E
    Appl Microbiol Biotechnol; 2014 Dec; 98(24):10105-18. PubMed ID: 24965558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FAD-Dependent Glucose Dehydrogenase Immobilization and Mediation Within a Naphthoquinone Redox Polymer.
    Milton RD
    Methods Mol Biol; 2017; 1504():193-202. PubMed ID: 27770423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended Catalytic Scope of a Well-Known Enzyme: Asymmetric Reduction of Iminium Substrates by Glucose Dehydrogenase.
    Roth S; Präg A; Wechsler C; Marolt M; Ferlaino S; Lüdeke S; Sandon N; Wetzl D; Iding H; Wirz B; Müller M
    Chembiochem; 2017 Sep; 18(17):1703-1706. PubMed ID: 28722796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome.
    Basner A; Antranikian G
    PLoS One; 2014; 9(1):e85844. PubMed ID: 24454935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Versatile Method to Construct Direct Electron Transfer-Type Enzyme Complexes Employing SpyCatcher/SpyTag System.
    Yanase T; Okuda-Shimazaki J; Asano R; Ikebukuro K; Sode K; Tsugawa W
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GMC oxidoreductases. A newly defined family of homologous proteins with diverse catalytic activities.
    Cavener DR
    J Mol Biol; 1992 Feb; 223(3):811-4. PubMed ID: 1542121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Sensitive Self-Powered Glucose Biosensor Based on an Enzymatic Biofuel Cell.
    Chansaenpak K; Kamkaew A; Lisnund S; Prachai P; Ratwirunkit P; Jingpho T; Blay V; Pinyou P
    Biosensors (Basel); 2021 Jan; 11(1):. PubMed ID: 33430194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase.
    Tsujimura S
    Biosci Biotechnol Biochem; 2019 Jan; 83(1):39-48. PubMed ID: 30274547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical activity of glucose oxidase on a poly(ionic liquid)-Au nanoparticle composite.
    Lee S; Ringstrand BS; Stone DA; Firestone MA
    ACS Appl Mater Interfaces; 2012 May; 4(5):2311-7. PubMed ID: 22548643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active site similarities of glucose dehydrogenase, glucose oxidase, and glucoamylase probed by deoxygenated substrates.
    Sierks MR; Bock K; Refn S; Svensson B
    Biochemistry; 1992 Sep; 31(37):8972-7. PubMed ID: 1390684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.