These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22027346)

  • 81. A new approach towards a minimal invasive retina implant.
    Gerding H
    J Neural Eng; 2007 Mar; 4(1):S30-7. PubMed ID: 17325414
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Epiretinal electrical stimulation and the inner limiting membrane in rat retina.
    Cloherty SL; Wong RC; Hadjinicolaou AE; Meffin H; Ibbotson MR; O'Brien BJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2989-92. PubMed ID: 23366553
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Degeneration stage-specific response pattern of retinal ganglion cell spikes in rd10 mouse retina.
    Park DJ; Senok SS; Goo YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3351-4. PubMed ID: 26737010
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Assessing the efficacy of visual prostheses by decoding ms-LFPs: application to retinal implants.
    Cottaris NP; Elfar SD
    J Neural Eng; 2009 Apr; 6(2):026007. PubMed ID: 19289859
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Increased spontaneous retinal ganglion cell activity in rd mice after neural retinal transplantation.
    Radner W; Sadda SR; Humayun MS; Suzuki S; de Juan E
    Invest Ophthalmol Vis Sci; 2002 Sep; 43(9):3053-8. PubMed ID: 12202529
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes.
    Boinagrov D; Pangratz-Fuehrer S; Goetz G; Palanker D
    J Neural Eng; 2014 Apr; 11(2):026008. PubMed ID: 24608166
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Interphase gap as a means to reduce electrical stimulation thresholds for epiretinal prostheses.
    Weitz AC; Behrend MR; Ahuja AK; Christopher P; Wei J; Wuyyuru V; Patel U; Greenberg RJ; Humayun MS; Chow RH; Weiland JD
    J Neural Eng; 2014 Feb; 11(1):016007. PubMed ID: 24654269
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation.
    Djilas M; Olès C; Lorach H; Bendali A; Dégardin J; Dubus E; Lissorgues-Bazin G; Rousseau L; Benosman R; Ieng SH; Joucla S; Yvert B; Bergonzo P; Sahel J; Picaud S
    J Neural Eng; 2011 Aug; 8(4):046020. PubMed ID: 21701056
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Minimizing activation of overlying axons with epiretinal stimulation: The role of fiber orientation and electrode configuration.
    Esler TB; Kerr RR; Tahayori B; Grayden DB; Meffin H; Burkitt AN
    PLoS One; 2018; 13(3):e0193598. PubMed ID: 29494655
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Spike history neural response model.
    Kameneva T; Abramian M; Zarelli D; Nĕsić D; Burkitt AN; Meffin H; Grayden DB
    J Comput Neurosci; 2015 Jun; 38(3):463-81. PubMed ID: 25862472
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons.
    Maturana MI; Apollo NV; Garrett DJ; Kameneva T; Cloherty SL; Grayden DB; Burkitt AN; Ibbotson MR; Meffin H
    PLoS Comput Biol; 2018 Feb; 14(2):e1005997. PubMed ID: 29432411
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A cortical (V1) neurophysiological recording model for assessing the efficacy of retinal visual prostheses.
    Elfar SD; Cottaris NP; Iezzi R; Abrams GW
    J Neurosci Methods; 2009 Jun; 180(2):195-207. PubMed ID: 19464512
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A computational model of electrical stimulation of the retinal ganglion cell.
    Greenberg RJ; Velte TJ; Humayun MS; Scarlatis GN; de Juan E
    IEEE Trans Biomed Eng; 1999 May; 46(5):505-14. PubMed ID: 10230129
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis.
    Hadjinicolaou AE; Leung RT; Garrett DJ; Ganesan K; Fox K; Nayagam DA; Shivdasani MN; Meffin H; Ibbotson MR; Prawer S; O'Brien BJ
    Biomaterials; 2012 Aug; 33(24):5812-20. PubMed ID: 22613134
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Optical coherence tomography imaging of retinal damage in real time under a stimulus electrode.
    Cohen E; Agrawal A; Connors M; Hansen B; Charkhkar H; Pfefer J
    J Neural Eng; 2011 Oct; 8(5):056017. PubMed ID: 21934187
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Operational challenges of retinal prostheses.
    Schmid EW; Fink W; Wilke R
    Med Eng Phys; 2014 Dec; 36(12):1644-55. PubMed ID: 25443535
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Convolution based method for calculating inputs from dendritic fields in a continuum model of the retina.
    Al Abed A; Yin S; Suaning GJ; Lovell NH; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():215-8. PubMed ID: 23365869
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential.
    Eickenscheidt M; Zeck G
    J Neural Eng; 2014 Jun; 11(3):036006. PubMed ID: 24762943
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Multi-electrode stimulation and recording in the isolated retina.
    Grumet AE; Wyatt JL; Rizzo JF
    J Neurosci Methods; 2000 Aug; 101(1):31-42. PubMed ID: 10967359
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Modeling electrical stimulation of retinal ganglion cell with optimizing additive noises for reducing threshold and energy consumption.
    Wu J; Jin M; Qiao Q
    Biomed Eng Online; 2017 Mar; 16(1):38. PubMed ID: 28347343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.