These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 2202778)

  • 1. Changes in the incorporation of carbon derived from glucose into cellular pools during the cell cycle of Saccharomyces cerevisiae.
    Oehlen LJ; van Doorn J; Scholte ME; Postma PW; van Dam K
    J Gen Microbiol; 1990 Mar; 136(3):413-8. PubMed ID: 2202778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA; Cortassa S
    Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical analysis of a method for determining the pattern of macromolecular synthesis during the cell cycle.
    Fraser RS; Barnes A
    J Cell Sci; 1983 Jul; 62():187-207. PubMed ID: 6352715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SFP1 is involved in cell size modulation in respiro-fermentative growth conditions.
    Cipollina C; Alberghina L; Porro D; Vai M
    Yeast; 2005 Apr; 22(5):385-99. PubMed ID: 15806610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose metabolism and cell size in continuous cultures of Saccharomyces cerevisiae.
    Porro D; Brambilla L; Alberghina L
    FEMS Microbiol Lett; 2003 Dec; 229(2):165-71. PubMed ID: 14680694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate of macromolecular synthesis through the cell cycle of the yeast Saccharomyces cerevisiae.
    Elliott SG; McLaughlin CS
    Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4384-8. PubMed ID: 360219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanisms of citrate on regulating the distribution of carbon flux in the biosynthesis of uridine 5'-monophosphate by Saccharomyces cerevisiae.
    Chen Y; Li S; Xiong J; Li Z; Bai J; Zhang L; Ye Q; Ouyang P; Ying H
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):75-81. PubMed ID: 19826805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization of mammalian cells and nuclei by centrifugal elutriation.
    Banfalvi G
    Methods Mol Biol; 2011; 761():25-45. PubMed ID: 21755439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic variations in the permeability of the cell wall of Saccharomyces cerevisiae.
    De Nobel JG; Klis FM; Ram A; Van Unen H; Priem J; Munnik T; Van Den Ende H
    Yeast; 1991; 7(6):589-98. PubMed ID: 1722597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bromodeoxyuridine labeling and flow cytometric identification of replicating Saccharomyces cerevisiae cells: lengths of cell cycle phases and population variability at specific cell cycle positions.
    Dien BS; Srienc F
    Biotechnol Prog; 1991; 7(4):291-8. PubMed ID: 1367343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon and energy uncoupling associated with cell cycle arrest of cdc mutants of Saccharomyces cerevisiae may be linked to glucose-induced catabolite repression.
    Mónaco ME; Valdecantos PA; Aon MA
    Exp Cell Res; 1995 Mar; 217(1):52-6. PubMed ID: 7867720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Status of calcium influx in cell cycle of S. cerevisiae.
    Anand S; Prasad R
    Biochem Int; 1987 May; 14(5):963-70. PubMed ID: 3331516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of carbon metabolism in chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol.
    de Jong-Gubbels P; Vanrolleghem P; Heijnen S; van Dijken JP; Pronk JT
    Yeast; 1995 Apr; 11(5):407-18. PubMed ID: 7597844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon source-dependent regulation of cell growth by murine protein kinase C epsilon expression in Saccharomyces cerevisiae.
    Parissenti AM; Villeneuve D; Kirwan-Rhude A; Busch D
    J Cell Physiol; 1999 Feb; 178(2):216-26. PubMed ID: 10048586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats.
    Mashego MR; Jansen ML; Vinke JL; van Gulik WM; Heijnen JJ
    FEMS Yeast Res; 2005 Feb; 5(4-5):419-30. PubMed ID: 15691747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In a medium containing glucose, lactate carbon is incorporated by gonococci predominantly into fatty acids and glucose carbon incorporation is increased: implications regarding lactate stimulation of metabolism.
    Yates E; Gao L; Woodcock N; Parsons N; Cole J; Smith H
    Int J Med Microbiol; 2000 Dec; 290(7):627-39. PubMed ID: 11200544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fate of glucose in strains S288C and S173-6B of the yeast Saccharomyces cerevisiae.
    Pedler SM; Wallace PG; Wallace JC; Berry MN
    Yeast; 1997 Feb; 13(2):119-25. PubMed ID: 9046093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free intracellular amino acid pools during autonomous oscillations in Saccharomyces cerevisiae.
    Hans MA; Heinzle E; Wittmann C
    Biotechnol Bioeng; 2003 Apr; 82(2):143-51. PubMed ID: 12584756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Preliminary proteome analysis for Saccharomyces cerevisiae under different culturing conditions].
    Zhang HM; Yao SJ; Peng LF; Shimizu K
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):398-402. PubMed ID: 15971613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular and extracellular levels of cyclic AMP during the cell cycle of Saccharomyces cerevisiae.
    Smith ME; Dickinson JR; Wheals AE
    Yeast; 1990; 6(1):53-60. PubMed ID: 2156391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.