BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

562 related articles for article (PubMed ID: 22028066)

  • 1. Microfluidic device based on a micro-hydrocyclone for particle-liquid separation.
    Bhardwaj P; Bagdi P; Sen AK
    Lab Chip; 2011 Dec; 11(23):4012-21. PubMed ID: 22028066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic-based microfluidic platform for biomolecular separation.
    Ramadan Q; Samper V; Poenar D; Yu C
    Biomed Microdevices; 2006 Jun; 8(2):151-8. PubMed ID: 16688574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection.
    Holmes D; Morgan H; Green NG
    Biosens Bioelectron; 2006 Feb; 21(8):1621-30. PubMed ID: 16332434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle separation in microfluidics using a switching ultrasonic field.
    Liu Y; Lim KM
    Lab Chip; 2011 Sep; 11(18):3167-73. PubMed ID: 21826293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple sheath-flow microfluidic device for micro/nanomanufacturing: fabrication of hydrodynamically shaped polymer fibers.
    Thangawng AL; Howell PB; Richards JJ; Erickson JS; Ligler FS
    Lab Chip; 2009 Nov; 9(21):3126-30. PubMed ID: 19823729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle sorting using a porous membrane in a microfluidic device.
    Wei H; Chueh BH; Wu H; Hall EW; Li CW; Schirhagl R; Lin JM; Zare RN
    Lab Chip; 2011 Jan; 11(2):238-45. PubMed ID: 21057685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback control system simulator for the control of biological cells in microfluidic cross slots and integrated microfluidic systems.
    Curtis MD; Sheard GJ; Fouras A
    Lab Chip; 2011 Jul; 11(14):2343-51. PubMed ID: 21611664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous separation of particles using a microfluidic device equipped with flow rate control valves.
    Sai Y; Yamada M; Yasuda M; Seki M
    J Chromatogr A; 2006 Sep; 1127(1-2):214-20. PubMed ID: 16890945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles.
    Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P
    Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High performance microfluidic capillary electrophoresis devices.
    Fu LM; Leong JC; Lin CF; Tai CH; Tsai CH
    Biomed Microdevices; 2007 Jun; 9(3):405-12. PubMed ID: 17487587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3D-printed mini-hydrocyclone for high throughput particle separation: application to primary harvesting of microalgae.
    Shakeel Syed M; Rafeie M; Henderson R; Vandamme D; Asadnia M; Ebrahimi Warkiani M
    Lab Chip; 2017 Jul; 17(14):2459-2469. PubMed ID: 28695927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic device for continuous, real time blood plasma separation.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2006 Jul; 6(7):871-80. PubMed ID: 16804591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous separation of cells and particles in microfluidic systems.
    Lenshof A; Laurell T
    Chem Soc Rev; 2010 Mar; 39(3):1203-17. PubMed ID: 20179832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes.
    Jen CP; Weng CH; Huang CT
    Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dielectrophoretic continuous flow sorter using integrated microelectrodes coupled to a channel constriction.
    Salomon S; Leichlé T; Nicu L
    Electrophoresis; 2011 Jun; 32(12):1508-14. PubMed ID: 21563186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.