These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22028634)

  • 1. A neurodynamic account of spontaneous behaviour.
    Namikawa J; Nishimoto R; Tani J
    PLoS Comput Biol; 2011 Oct; 7(10):e1002221. PubMed ID: 22028634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment.
    Yamashita Y; Tani J
    PLoS Comput Biol; 2008 Nov; 4(11):e1000220. PubMed ID: 18989398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of hierarchical structures for actions and motor imagery: a constructivist view from synthetic neuro-robotics study.
    Nishimoto R; Tani J
    Psychol Res; 2009 Jul; 73(4):545-58. PubMed ID: 19352697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving "organic compositionality" through self-organization: reviews on brain-inspired robotics experiments.
    Tani J; Nishimoto R; Paine RW
    Neural Netw; 2008 May; 21(4):584-603. PubMed ID: 18495423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct Sources of Deterministic and Stochastic Components of Action Timing Decisions in Rodent Frontal Cortex.
    Murakami M; Shteingart H; Loewenstein Y; Mainen ZF
    Neuron; 2017 May; 94(4):908-919.e7. PubMed ID: 28521140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilevel structure in behaviour and in the brain: a model of Fuster's hierarchy.
    Botvinick MM
    Philos Trans R Soc Lond B Biol Sci; 2007 Sep; 362(1485):1615-26. PubMed ID: 17428777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online Learning and Memory of Neural Trajectory Replays for Prefrontal Persistent and Dynamic Representations in the Irregular Asynchronous State.
    Sarazin MXB; Victor J; Medernach D; Naudé J; Delord B
    Front Neural Circuits; 2021; 15():648538. PubMed ID: 34305535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuro-robotics study on integrative learning of proactive visual attention and motor behaviors.
    Jeong S; Arie H; Lee M; Tani J
    Cogn Neurodyn; 2012 Feb; 6(1):43-59. PubMed ID: 23372619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resting-state functional connectivity predicts the ability to adapt arm reaching in a robot-mediated force field.
    Faiman I; Pizzamiglio S; Turner DL
    Neuroimage; 2018 Jul; 174():494-503. PubMed ID: 29588227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EO-MTRNN: evolutionary optimization of hyperparameters for a neuro-inspired computational model of spatiotemporal learning.
    Wieser E; Cheng G
    Biol Cybern; 2020 Jun; 114(3):363-387. PubMed ID: 32185485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning to Perceive the World as Probabilistic or Deterministic via Interaction With Others: A Neuro-Robotics Experiment.
    Murata S; Yamashita Y; Arie H; Ogata T; Sugano S; Tani J
    IEEE Trans Neural Netw Learn Syst; 2017 Apr; 28(4):830-848. PubMed ID: 26595928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action monitoring and medial frontal cortex: leading role of supplementary motor area.
    Bonini F; Burle B; Liégeois-Chauvel C; Régis J; Chauvel P; Vidal F
    Science; 2014 Feb; 343(6173):888-91. PubMed ID: 24558161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attention to action: specific modulation of corticocortical interactions in humans.
    Rowe J; Friston K; Frackowiak R; Passingham R
    Neuroimage; 2002 Oct; 17(2):988-98. PubMed ID: 12377172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning to imitate stochastic time series in a compositional way by chaos.
    Namikawa J; Tani J
    Neural Netw; 2010 Jun; 23(5):625-38. PubMed ID: 20045751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From ideas to action: The prefrontal-premotor connections that shape motor behavior.
    Grafton ST; Volz LJ
    Handb Clin Neurol; 2019; 163():237-255. PubMed ID: 31590733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of compositional and contextual communicable congruence in robots by using dynamic neural network models.
    Park G; Tani J
    Neural Netw; 2015 Dec; 72():109-22. PubMed ID: 26498195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two Brains in Action: Joint-Action Coding in the Primate Frontal Cortex.
    Ferrari-Toniolo S; Visco-Comandini F; Battaglia-Mayer A
    J Neurosci; 2019 May; 39(18):3514-3528. PubMed ID: 30804088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The selection of intended actions and the observation of others' actions: a time-resolved fMRI study.
    Cunnington R; Windischberger C; Robinson S; Moser E
    Neuroimage; 2006 Feb; 29(4):1294-302. PubMed ID: 16246592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recursion in action: An fMRI study on the generation of new hierarchical levels in motor sequences.
    Martins MJD; Bianco R; Sammler D; Villringer A
    Hum Brain Mapp; 2019 Jun; 40(9):2623-2638. PubMed ID: 30834624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.