These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 22028781)

  • 1. Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.
    Lacroix B; Citovsky V
    PLoS One; 2011; 6(10):e25578. PubMed ID: 22028781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens.
    Aly KA; Baron C
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3766-3775. PubMed ID: 17975085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane and core periplasmic Agrobacterium tumefaciens virulence Type IV secretion system components localize to multiple sites around the bacterial perimeter during lateral attachment to plant cells.
    Aguilar J; Cameron TA; Zupan J; Zambryski P
    mBio; 2011; 2(6):e00218-11. PubMed ID: 22027007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens.
    Schmidt-Eisenlohr H; Domke N; Angerer C; Wanner G; Zambryski PC; Baron C
    J Bacteriol; 1999 Dec; 181(24):7485-92. PubMed ID: 10601205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The type IV secretion system component VirB5 binds to the trans-zeatin biosynthetic enzyme Tzs and enables its translocation to the cell surface of Agrobacterium tumefaciens.
    Aly KA; Krall L; Lottspeich F; Baron C
    J Bacteriol; 2008 Mar; 190(5):1595-604. PubMed ID: 18165307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens.
    Hapfelmeier S; Domke N; Zambryski PC; Baron C
    J Bacteriol; 2000 Aug; 182(16):4505-11. PubMed ID: 10913084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disassembly of synthetic Agrobacterium T-DNA-protein complexes via the host SCF(VBF) ubiquitin-ligase complex pathway.
    Zaltsman A; Lacroix B; Gafni Y; Citovsky V
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):169-74. PubMed ID: 23248273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pSa causes oncogenic suppression of Agrobacterium by inhibiting VirE2 protein export.
    Lee LY; Gelvin SB; Kado CI
    J Bacteriol; 1999 Jan; 181(1):186-96. PubMed ID: 9864329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis RETICULON-LIKE3 (RTNLB3) and RTNLB8 Participate in Agrobacterium-Mediated Plant Transformation.
    Huang FC; Fu BJ; Liu YT; Chang YR; Chi SF; Chien PR; Huang SC; Hwang HH
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29495267
    [No Abstract]   [Full Text] [Related]  

  • 10. VirD4-independent transformation by CloDF13 evidences an unknown factor required for the genetic colonization of plants via Agrobacterium.
    Escudero J; Den Dulk-Ras A; Regensburg-Tuïnk TJ; Hooykaas PJ
    Mol Microbiol; 2003 Feb; 47(4):891-901. PubMed ID: 12581347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of plant DNA damage response gene expression during Agrobacterium infection.
    Hu Y; Lacroix B; Citovsky V
    Biochem Biophys Res Commun; 2021 May; 554():7-12. PubMed ID: 33774281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains.
    Baron C; Domke N; Beinhofer M; Hapfelmeier S
    J Bacteriol; 2001 Dec; 183(23):6852-61. PubMed ID: 11698374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional Activation of Virulence Genes of Rhizobium etli.
    Wang L; Lacroix B; Guo J; Citovsky V
    J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28069822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium.
    Hansen G; Das A; Chilton MD
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7603-7. PubMed ID: 8052627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression.
    Veena ; Jiang H; Doerge RW; Gelvin SB
    Plant J; 2003 Jul; 35(2):219-36. PubMed ID: 12848827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome Profiling of Plant Genes in Response to Agrobacterium tumefaciens-Mediated Transformation.
    Willig CJ; Duan K; Zhang ZJ
    Curr Top Microbiol Immunol; 2018; 418():319-348. PubMed ID: 30062593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium.
    Tzfira T; Vaidya M; Citovsky V
    Nature; 2004 Sep; 431(7004):87-92. PubMed ID: 15343337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is VIP1 important for Agrobacterium-mediated transformation?
    Shi Y; Lee LY; Gelvin SB
    Plant J; 2014 Sep; 79(5):848-60. PubMed ID: 24953893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010.
    Binns AN; Beaupré CE; Dale EM
    J Bacteriol; 1995 Sep; 177(17):4890-9. PubMed ID: 7665465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems.
    Yuan Q; Carle A; Gao C; Sivanesan D; Aly KA; Höppner C; Krall L; Domke N; Baron C
    J Biol Chem; 2005 Jul; 280(28):26349-59. PubMed ID: 15901731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.