BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22028786)

  • 1. Identification of QTLs for arsenic accumulation in maize (Zea mays L.) using a RIL population.
    Ding D; Li W; Song G; Qi H; Liu J; Tang J
    PLoS One; 2011; 6(10):e25646. PubMed ID: 22028786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative trait loci for mercury accumulation in maize (Zea mays L.) identified using a RIL population.
    Fu Z; Li W; Zhang Q; Wang L; Zhang X; Song G; Fu Z; Ding D; Liu Z; Tang J
    PLoS One; 2014; 9(9):e107243. PubMed ID: 25210737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis of arsenic accumulation in maize using QTL mapping.
    Fu Z; Li W; Xing X; Xu M; Liu X; Li H; Xue Y; Liu Z; Tang J
    Sci Rep; 2016 Feb; 6():21292. PubMed ID: 26880701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic-based dissection of arsenic accumulation in maize using a genome-wide association analysis method.
    Zhao Z; Zhang H; Fu Z; Chen H; Lin Y; Yan P; Li W; Xie H; Guo Z; Zhang X; Tang J
    Plant Biotechnol J; 2018 May; 16(5):1085-1093. PubMed ID: 29055111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QTL mapping analysis of maize plant type based on SNP molecular marker.
    Zhu W; Zhao Y; Liu J; Huang L; Lu X; Kang D
    Cell Mol Biol (Noisy-le-grand); 2019 Feb; 65(2):18-27. PubMed ID: 30860467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of QTL for agronomic traits using high-density SNPs with an RIL population in maize.
    Sa KJ; Choi IY; Park JY; Choi JK; Ryu SH; Lee JK
    Genes Genomics; 2021 Dec; 43(12):1403-1411. PubMed ID: 34591233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative quantitative trait locus mapping of maize flowering-related traits in an F2:3 and recombinant inbred line population.
    Liu YH; Yi Q; Hou XB; Zhang XG; Zhang JJ; Liu HM; Hu YF; Huang YB
    Genet Mol Res; 2016 Jun; 15(2):. PubMed ID: 27420987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of QTLs for resistance to maize rough dwarf disease using two connected RIL populations in maize.
    Wang X; Yang Q; Dai Z; Wang Y; Zhang Y; Li B; Zhao W; Hao J
    PLoS One; 2019; 14(12):e0226700. PubMed ID: 31846488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of quantitative trait loci for kernel-related traits and the heterosis for these traits in maize (Zea mays L.).
    Liu Y; Yi Q; Hou X; Hu Y; Li Y; Yu G; Liu H; Zhang J; Huang Y
    Mol Genet Genomics; 2020 Jan; 295(1):121-133. PubMed ID: 31511973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population.
    Wang T; Wang M; Hu S; Xiao Y; Tong H; Pan Q; Xue J; Yan J; Li J; Yang X
    BMC Plant Biol; 2015 Dec; 15():288. PubMed ID: 26654531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of quantitative trait loci for kernel oil and protein concentration in a B73 and Zheng58 maize cross.
    Yang Z; Li X; Zhang N; Zhang YN; Jiang HW; Gao J; Kuai BK; Ding YL; Huang XQ
    Genet Mol Res; 2016 Sep; 15(3):. PubMed ID: 27706793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mapping of QTLs controlling Pb(2+) content in maize kernels under Pb(2+)stress].
    Zhao X; Lin H; Zhang Z; Shen Y; Pan G
    Yi Chuan; 2014 Aug; 36(8):821-6. PubMed ID: 25143280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QTL verification of grain protein content and its correlation with oil content by using connected RIL populations of high-oil maize.
    Yang GH; Dong YB; Li YL; Wang QL; Shi QL; Zhou Q
    Genet Mol Res; 2014 Feb; 13(1):881-94. PubMed ID: 24615052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis of agronomic traits associated with plant architecture by QTL mapping in maize.
    Zheng ZP; Liu XH
    Genet Mol Res; 2013 Apr; 12(2):1243-53. PubMed ID: 23661449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations.
    Pan Q; Xu Y; Li K; Peng Y; Zhan W; Li W; Li L; Yan J
    Plant Physiol; 2017 Oct; 175(2):858-873. PubMed ID: 28838954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [QTL mapping for chlorophyll content in maize].
    Wang AY; Zhang CQ
    Yi Chuan; 2008 Aug; 30(8):1083-91. PubMed ID: 18779162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Determinants of the Network of Primary Metabolism and Their Relationships to Plant Performance in a Maize Recombinant Inbred Line Population.
    Wen W; Li K; Alseekh S; Omranian N; Zhao L; Zhou Y; Xiao Y; Jin M; Yang N; Liu H; Florian A; Li W; Pan Q; Nikoloski Z; Yan J; Fernie AR
    Plant Cell; 2015 Jul; 27(7):1839-56. PubMed ID: 26187921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative trait locus analysis for kernel width using maize recombinant inbred lines.
    Hui GQ; Wen GQ; Liu XH; Yang HP; Luo Q; Song HX; Wen L; Sun Y; Zhang HM
    Genet Mol Res; 2015 Nov; 14(4):14496-502. PubMed ID: 26600508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis of seedling root traits reveals the association of root trait with other agronomic traits in maize.
    Ju C; Zhang W; Liu Y; Gao Y; Wang X; Yan J; Yang X; Li J
    BMC Plant Biol; 2018 Aug; 18(1):171. PubMed ID: 30111287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative mapping of quantitative trait loci for tassel-related traits of maize in F
    Yi Q; Liu Y; Zhang X; Hou X; Zhang J; Liu H; Hu Y; Yu G; Huang Y
    J Genet; 2018 Mar; 97(1):253-266. PubMed ID: 29666344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.