These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Regions of low endothelial shear stress colocalize with positive vascular remodeling and atherosclerotic plaque disruption: an in vivo magnetic resonance imaging study. Phinikaridou A; Hua N; Pham T; Hamilton JA Circ Cardiovasc Imaging; 2013 Mar; 6(2):302-10. PubMed ID: 23357244 [TBL] [Abstract][Full Text] [Related]
6. Identifying Vulnerable Atherosclerotic Plaque in Rabbits Using DMSA-USPIO Enhanced Magnetic Resonance Imaging to Investigate the Effect of Atorvastatin. Qi C; Deng L; Li D; Wu W; Gong L; Li Y; Zhang Q; Zhang T; Zhang C; Zhang Y PLoS One; 2015; 10(5):e0125677. PubMed ID: 25973795 [TBL] [Abstract][Full Text] [Related]
7. Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS. Waters EA; Chen J; Allen JS; Zhang H; Lanza GM; Wickline SA J Cardiovasc Magn Reson; 2008 Sep; 10(1):43. PubMed ID: 18817557 [TBL] [Abstract][Full Text] [Related]
8. Molecular and cellular targets of the MRI contrast agent P947 for atherosclerosis imaging. Ouimet T; Lancelot E; Hyafil F; Rienzo M; Deux F; Lemaître M; Duquesnoy S; Garot J; Roques BP; Michel JB; Corot C; Ballet S Mol Pharm; 2012 Apr; 9(4):850-61. PubMed ID: 22352457 [TBL] [Abstract][Full Text] [Related]
9. Adiponectin-coated nanoparticles for enhanced imaging of atherosclerotic plaques. Almer G; Wernig K; Saba-Lepek M; Haj-Yahya S; Rattenberger J; Wagner J; Gradauer K; Frascione D; Pabst G; Leitinger G; Mangge H; Zimmer A; Prassl R Int J Nanomedicine; 2011; 6():1279-90. PubMed ID: 21753879 [TBL] [Abstract][Full Text] [Related]
10. Degradation of Glycocalyx and Multiple Manifestations of Endothelial Dysfunction Coincide in the Early Phase of Endothelial Dysfunction Before Atherosclerotic Plaque Development in Apolipoprotein E/Low-Density Lipoprotein Receptor-Deficient Mice. Bar A; Targosz-Korecka M; Suraj J; Proniewski B; Jasztal A; Marczyk B; Sternak M; Przybyło M; Kurpińska A; Walczak M; Kostogrys RB; Szymonski M; Chlopicki S J Am Heart Assoc; 2019 Mar; 8(6):e011171. PubMed ID: 30866689 [TBL] [Abstract][Full Text] [Related]
11. Atheroma Susceptible to Thrombosis Exhibit Impaired Endothelial Permeability In Vivo as Assessed by Nanoparticle-Based Fluorescence Molecular Imaging. Stein-Merlob AF; Hara T; McCarthy JR; Mauskapf A; Hamilton JA; Ntziachristos V; Libby P; Jaffer FA Circ Cardiovasc Imaging; 2017 May; 10(5):. PubMed ID: 28487316 [TBL] [Abstract][Full Text] [Related]
12. Nanoparticle-Aided Characterization of Arterial Endothelial Architecture during Atherosclerosis Progression and Metabolic Therapy. Beldman TJ; Malinova TS; Desclos E; Grootemaat AE; Misiak ALS; van der Velden S; van Roomen CPAA; Beckers L; van Veen HA; Krawczyk PM; Hoebe RA; Sluimer JC; Neele AE; de Winther MPJ; van der Wel NN; Lutgens E; Mulder WJM; Huveneers S; Kluza E ACS Nano; 2019 Dec; 13(12):13759-13774. PubMed ID: 31268670 [TBL] [Abstract][Full Text] [Related]
13. Development of a magnetic resonance imaging protocol for the characterization of atherosclerotic plaque by using vascular cell adhesion molecule-1 and apoptosis-targeted ultrasmall superparamagnetic iron oxide derivatives. Burtea C; Ballet S; Laurent S; Rousseaux O; Dencausse A; Gonzalez W; Port M; Corot C; Vander Elst L; Muller RN Arterioscler Thromb Vasc Biol; 2012 Jun; 32(6):e36-48. PubMed ID: 22516067 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of Thrombin With PPACK-Nanoparticles Restores Disrupted Endothelial Barriers and Attenuates Thrombotic Risk in Experimental Atherosclerosis. Palekar RU; Jallouk AP; Myerson JW; Pan H; Wickline SA Arterioscler Thromb Vasc Biol; 2016 Mar; 36(3):446-55. PubMed ID: 26769047 [TBL] [Abstract][Full Text] [Related]
15. Early in vivo discrimination of vulnerable atherosclerotic plaques that disrupt: A serial MRI study. Pham TA; Hua N; Phinikaridou A; Killiany R; Hamilton J Atherosclerosis; 2016 Jan; 244():101-7. PubMed ID: 26606442 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques. Calcagno C; Lobatto ME; Dyvorne H; Robson PM; Millon A; Senders ML; Lairez O; Ramachandran S; Coolen BF; Black A; Mulder WJ; Fayad ZA NMR Biomed; 2015 Oct; 28(10):1304-14. PubMed ID: 26332103 [TBL] [Abstract][Full Text] [Related]
17. Ultrasound and magnetic resonance molecular imaging of atherosclerotic neovasculature with perfluorocarbon magnetic nanocapsules targeted against vascular endothelial growth factor receptor 2 in rats. Chen H; Chen L; Liang R; Wei J Mol Med Rep; 2017 Nov; 16(5):5986-5996. PubMed ID: 28849045 [TBL] [Abstract][Full Text] [Related]
18. Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents. Palekar RU; Jallouk AP; Lanza GM; Pan H; Wickline SA Nanomedicine (Lond); 2015; 10(11):1817-32. PubMed ID: 26080701 [TBL] [Abstract][Full Text] [Related]
19. Contrast enhancement by differently sized paramagnetic MRI contrast agents in mice with two phenotypes of atherosclerotic plaque. van Bochove GS; Paulis LE; Segers D; Mulder WJ; Krams R; Nicolay K; Strijkers GJ Contrast Media Mol Imaging; 2011; 6(1):35-45. PubMed ID: 20882509 [TBL] [Abstract][Full Text] [Related]
20. MRI of atherosclerosis and fatty liver disease in cholesterol fed rabbits. Taylor E; Huang N; Bodde J; Ellison A; Killiany R; Bachschmid MM; Hamilton J J Transl Med; 2018 Aug; 16(1):215. PubMed ID: 30068362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]