These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 22029278)

  • 1. Flexibility, diversity, and cooperativity: pillars of enzyme catalysis.
    Hammes GG; Benkovic SJ; Hammes-Schiffer S
    Biochemistry; 2011 Dec; 50(48):10422-30. PubMed ID: 22029278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple intermediates, diverse conformations, and cooperative conformational changes underlie the catalytic hydride transfer reaction of dihydrofolate reductase.
    Arora K; Brooks CL
    Top Curr Chem; 2013; 337():165-87. PubMed ID: 23420416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Asp122 Mutation on the Hydride Transfer in E. coli DHFR Demonstrates the Goldilocks of Enzyme Flexibility.
    Mhashal AR; Pshetitsky Y; Eitan R; Cheatum CM; Kohen A; Major DT
    J Phys Chem B; 2018 Aug; 122(33):8006-8017. PubMed ID: 30040418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation coupled enzyme catalysis: single-molecule and transient kinetics investigation of dihydrofolate reductase.
    Antikainen NM; Smiley RD; Benkovic SJ; Hammes GG
    Biochemistry; 2005 Dec; 44(51):16835-43. PubMed ID: 16363797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic energy landscape of dihydrofolate reductase catalysis.
    Boehr DD; McElheny D; Dyson HJ; Wright PE
    Science; 2006 Sep; 313(5793):1638-42. PubMed ID: 16973882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pivotal role of Gly 121 in dihydrofolate reductase from Escherichia coli: the altered structure of a mutant enzyme may form the basis of its diminished catalytic performance.
    Swanwick RS; Shrimpton PJ; Allemann RK
    Biochemistry; 2004 Apr; 43(14):4119-27. PubMed ID: 15065854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase.
    Swanwick RS; Maglia G; Tey LH; Allemann RK
    Biochem J; 2006 Feb; 394(Pt 1):259-65. PubMed ID: 16241906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of pressure on enzyme function of Escherichia coli dihydrofolate reductase.
    Ohmae E; Tatsuta M; Abe F; Kato C; Tanaka N; Kunugi S; Gekko K
    Biochim Biophys Acta; 2008; 1784(7-8):1115-21. PubMed ID: 18472025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of water in the catalytic cycle of E. coli dihydrofolate reductase.
    Shrimpton P; Allemann RK
    Protein Sci; 2002 Jun; 11(6):1442-51. PubMed ID: 12021443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational selection and induced changes along the catalytic cycle of Escherichia coli dihydrofolate reductase.
    Weikl TR; Boehr DD
    Proteins; 2012 Oct; 80(10):2369-83. PubMed ID: 22641560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freezing a single distal motion in dihydrofolate reductase.
    Sergi A; Watney JB; Wong KF; Hammes-Schiffer S
    J Phys Chem B; 2006 Feb; 110(5):2435-41. PubMed ID: 16471835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of hydride transfer and cofactor fluorescence decay in mutants of dihydrofolate reductase: possible evidence for participation of enzyme molecular motions in catalysis.
    Farnum MF; Magde D; Howell EE; Hirai JT; Warren MS; Grimsley JK; Kraut J
    Biochemistry; 1991 Dec; 30(49):11567-79. PubMed ID: 1747376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free-energy landscape of enzyme catalysis.
    Benkovic SJ; Hammes GG; Hammes-Schiffer S
    Biochemistry; 2008 Mar; 47(11):3317-21. PubMed ID: 18298083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strength of an interloop hydrogen bond determines the kinetic pathway in catalysis by Escherichia coli dihydrofolate reductase.
    Miller GP; Benkovic SJ
    Biochemistry; 1998 May; 37(18):6336-42. PubMed ID: 9572848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydride transfer catalysed by Escherichia coli and Bacillus subtilis dihydrofolate reductase: coupled motions and distal mutations.
    Hammes-Schiffer S; Watney JB
    Philos Trans R Soc Lond B Biol Sci; 2006 Aug; 361(1472):1365-73. PubMed ID: 16873124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli.
    Oyen D; Wechselberger R; Srinivasan V; Steyaert J; Barlow JN
    Biochim Biophys Acta; 2013 Oct; 1834(10):2147-57. PubMed ID: 23911607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-Dependent Conformational Dynamics of Dihydrofolate Reductase.
    Reddish MJ; Vaughn MB; Fu R; Dyer RB
    Biochemistry; 2016 Mar; 55(10):1485-93. PubMed ID: 26901612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase.
    Liu CT; Layfield JP; Stewart RJ; French JB; Hanoian P; Asbury JB; Hammes-Schiffer S; Benkovic SJ
    J Am Chem Soc; 2014 Jul; 136(29):10349-60. PubMed ID: 24977791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relating protein motion to catalysis.
    Hammes-Schiffer S; Benkovic SJ
    Annu Rev Biochem; 2006; 75():519-41. PubMed ID: 16756501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima.
    Maglia G; Javed MH; Allemann RK
    Biochem J; 2003 Sep; 374(Pt 2):529-35. PubMed ID: 12765545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.