BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 22029337)

  • 1. Lateral dynamics of charged lipids and peripheral proteins in spatially heterogeneous membranes: comparison of continuous and Monte Carlo approaches.
    Kiselev VY; Leda M; Lobanov AI; Marenduzzo D; Goryachev AB
    J Chem Phys; 2011 Oct; 135(15):155103. PubMed ID: 22029337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible charged macromolecules on mixed fluid lipid membranes: theory and Monte Carlo simulations.
    Tzlil S; Ben-Shaul A
    Biophys J; 2005 Nov; 89(5):2972-87. PubMed ID: 16126828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein diffusion on charged membranes: a dynamic mean-field model describes time evolution and lipid reorganization.
    Khelashvili G; Weinstein H; Harries D
    Biophys J; 2008 Apr; 94(7):2580-97. PubMed ID: 18065451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures.
    Chatterjee A; Vlachos DG
    J Chem Phys; 2006 Feb; 124(6):64110. PubMed ID: 16483199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroion solutions in the cell model studied by field theory and Monte Carlo simulations.
    Lue L; Linse P
    J Chem Phys; 2011 Dec; 135(22):224508. PubMed ID: 22168704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode excitation Monte Carlo simulations of mesoscopically large membranes.
    Farago O
    J Chem Phys; 2008 May; 128(18):184105. PubMed ID: 18532797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poisson-Boltzmann-Nernst-Planck model.
    Zheng Q; Wei GW
    J Chem Phys; 2011 May; 134(19):194101. PubMed ID: 21599038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved sampling for simulations of interfacial membrane proteins: application of generalized shadow hybrid Monte Carlo to a peptide toxin/bilayer system.
    Wee CL; Sansom MS; Reich S; Akhmatskaya E
    J Phys Chem B; 2008 May; 112(18):5710-7. PubMed ID: 18412407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.
    Lu B; Zhou YC; Huber GA; Bond SD; Holst MJ; McCammon JA
    J Chem Phys; 2007 Oct; 127(13):135102. PubMed ID: 17919055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sampling efficiency in explicit and implicit membrane environments studied by peptide folding simulations.
    Ulmschneider JP; Ulmschneider MB
    Proteins; 2009 May; 75(3):586-97. PubMed ID: 19003985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo-based linear Poisson-Boltzmann approach makes accurate salt-dependent solvation free energy predictions possible.
    Simonov NA; Mascagni M; Fenley MO
    J Chem Phys; 2007 Nov; 127(18):185105. PubMed ID: 18020668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic lattice grand canonical Monte Carlo simulation for ion current calculations in a model ion channel system.
    Hwang H; Schatz GC; Ratner MA
    J Chem Phys; 2007 Jul; 127(2):024706. PubMed ID: 17640144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo folding of trans-membrane helical peptides in an implicit generalized Born membrane.
    Ulmschneider JP; Ulmschneider MB; Di Nola A
    Proteins; 2007 Nov; 69(2):297-308. PubMed ID: 17600830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible polyelectrolyte simulations at the Poisson-Boltzmann level: a comparison of the kink-jump and multigrid configurational-bias Monte Carlo methods.
    Tsonchev S; Coalson RD; Liu A; Beck TL
    J Chem Phys; 2004 May; 120(20):9817-21. PubMed ID: 15267998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dressed counterions: strong electrostatic coupling in the presence of salt.
    Kanduc M; Naji A; Forsman J; Podgornik R
    J Chem Phys; 2010 Mar; 132(12):124701. PubMed ID: 20370139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic model for mixed cationic-zwitterionic lipid bilayers.
    Mbamala EC; Fahr A; May S
    Langmuir; 2006 May; 22(11):5129-36. PubMed ID: 16700604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probability dynamics of a repopulating tumor in case of fractionated external radiotherapy.
    Stavreva N; Stavrev P; Fallone BG
    Phys Med; 2009 Dec; 25(4):181-91. PubMed ID: 19345599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase separation in three-component lipid membranes: from Monte Carlo simulations to Ginzburg-Landau equations.
    Reigada R; Buceta J; Gómez J; Sagués F; Lindenberg K
    J Chem Phys; 2008 Jan; 128(2):025102. PubMed ID: 18205477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations.
    Mayawala K; Vlachos DG; Edwards JS
    Biophys Chem; 2006 Jun; 121(3):194-208. PubMed ID: 16504372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins.
    Abagyan R; Totrov M
    J Mol Biol; 1994 Jan; 235(3):983-1002. PubMed ID: 8289329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.