These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22029344)

  • 41. Three-dimensional imaging and uptake of the anticancer drug combretastatin in cell spheroids and photoisomerization in gels with multiphoton excitation.
    Scherer KM; Bisby RH; Botchway SW; Hadfield JA; Haycock JW; Parker AW
    J Biomed Opt; 2015 Jul; 20(7):78003. PubMed ID: 26146878
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimizing two-photon multiple fluorophore imaging of the human trabecular meshwork.
    Gonzalez JM; Ammar MJ; Ko MK; Tan JC
    Mol Vis; 2016; 22():203-12. PubMed ID: 27122962
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Steady state anisotropy two-photon microscopy resolves multiple, spectrally similar fluorophores, enabling in vivo multilabel imaging.
    Dubach JM; Vinegoni C; Weissleder R
    Opt Lett; 2014 Aug; 39(15):4482-5. PubMed ID: 25078208
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiphoton excitation of fluorescent probes.
    Xu C; Zipfel WR
    Cold Spring Harb Protoc; 2015 Mar; 2015(3):250-8. PubMed ID: 25734074
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pulse-shaping based two-photon FRET stoichiometry.
    Flynn DC; Bhagwat AR; Brenner MH; Núñez MF; Mork BE; Cai D; Swanson JA; Ogilvie JP
    Opt Express; 2015 Feb; 23(3):3353-72. PubMed ID: 25836193
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adding new dimensions to laser-scanning fluorescence microscopy.
    De AK; Goswami D
    J Microsc; 2009 Feb; 233(2):320-5. PubMed ID: 19220698
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex.
    He GS; Zheng Q; Prasad PN; Grote JG; Hopkins FK
    Opt Lett; 2006 Feb; 31(3):359-61. PubMed ID: 16480208
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two-photon excited fluorescence lifetime measurements through a double-clad photonic crystal fiber for tissue micro-endoscopy.
    Knorr F; Yankelevich DR; Liu J; Wachsmann-Hogiu S; Marcu L
    J Biophotonics; 2012 Jan; 5(1):14-9. PubMed ID: 22045513
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acousto-optic modulator system for femtosecond laser pulses.
    Zeng S; Bi K; Xue S; Liu Y; Lv X; Luo Q
    Rev Sci Instrum; 2007 Jan; 78(1):015103. PubMed ID: 17503942
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fluorescence advantages with microscopic spatiotemporal control.
    Goswami D; Roy D; De AK
    Proc SPIE Int Soc Opt Eng; 2010 Feb; 7569():. PubMed ID: 23814447
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pulse-shaped broadband multiphoton excitation for single-molecule fluorescence detection in the far field.
    Nobis D; Sansom HG; Magennis SW
    Methods Appl Fluoresc; 2023 Jan; 11(1):. PubMed ID: 36595246
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Six-Color Confocal Immunofluorescence Microscopy with 4-Laser Lines.
    Heger L; Lühr JJ; Amon L; Smith AS; Eissing N; Dudziak D
    Methods Mol Biol; 2021; 2350():21-30. PubMed ID: 34331276
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex.
    Kobat D; Horton NG; Xu C
    J Biomed Opt; 2011 Oct; 16(10):106014. PubMed ID: 22029361
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photophysical properties of Na
    Naumann G; Lippmann K; Eilers J
    J Microsc; 2018 Nov; 272(2):136-144. PubMed ID: 30191999
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitigating thermal mechanical damage potential during two-photon dermal imaging.
    Masters BR; So PT; Buehler C; Barry N; Sutin JD; Mantulin WW; Gratton E
    J Biomed Opt; 2004; 9(6):1265-70. PubMed ID: 15568947
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAPI and Hoechst 33342 using three-photon excitation.
    Lakowicz JR; Gryczynski I; Malak H; Schrader M; Engelhardt P; Kano H; Hell SW
    Biophys J; 1997 Feb; 72(2 Pt 1):567-78. PubMed ID: 9017187
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy.
    Xu C; Zipfel W; Shear JB; Williams RM; Webb WW
    Proc Natl Acad Sci U S A; 1996 Oct; 93(20):10763-8. PubMed ID: 8855254
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiphoton fluorescence lifetime imaging of human hair.
    Ehlers A; Riemann I; Stark M; König K
    Microsc Res Tech; 2007 Feb; 70(2):154-61. PubMed ID: 17152070
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response.
    Baraghis E; Devor A; Fang Q; Srinivasan VJ; Wu W; Lesage F; Ayata C; Kasischke KA; Boas DA; Sakadzić S
    J Biomed Opt; 2011 Oct; 16(10):106003. PubMed ID: 22029350
    [TBL] [Abstract][Full Text] [Related]  

  • 60. jYCaMP: an optimized calcium indicator for two-photon imaging at fiber laser wavelengths.
    Mohr MA; Bushey D; Aggarwal A; Marvin JS; Kim JJ; Marquez EJ; Liang Y; Patel R; Macklin JJ; Lee CY; Tsang A; Tsegaye G; Ahrens AM; Chen JL; Kim DS; Wong AM; Looger LL; Schreiter ER; Podgorski K
    Nat Methods; 2020 Jul; 17(7):694-697. PubMed ID: 32451475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.