These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22029707)

  • 1. Graphitic carbon growth on crystalline and amorphous oxide substrates using molecular beam epitaxy.
    Jerng SK; Seong Yu D; Hong Lee J; Kim C; Yoon S; Chun SH
    Nanoscale Res Lett; 2011 Oct; 6(1):565. PubMed ID: 22029707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy.
    Lee J; Varshney V; Park J; Farmer BL; Roy AK
    Nanoscale; 2016 May; 8(18):9704-13. PubMed ID: 27108606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphitic carbon grown on fluorides by molecular beam epitaxy.
    Jerng SK; Lee JH; Kim YS; Chun SH
    Nanoscale Res Lett; 2013 Jan; 8(1):11. PubMed ID: 23286607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally reduced graphenes exhibiting a close relationship to amorphous carbon.
    Wong CH; Ambrosi A; Pumera M
    Nanoscale; 2012 Aug; 4(16):4972-7. PubMed ID: 22760743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An atomic carbon source for high temperature molecular beam epitaxy of graphene.
    Albar JD; Summerfield A; Cheng TS; Davies A; Smith EF; Khlobystov AN; Mellor CJ; Taniguchi T; Watanabe K; Foxon CT; Eaves L; Beton PH; Novikov SV
    Sci Rep; 2017 Jul; 7(1):6598. PubMed ID: 28747805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleation of Graphene Layers on Magnetic Oxides: Co
    Beatty J; Cheng T; Cao Y; Driver MS; Goddard WA; Kelber JA
    J Phys Chem Lett; 2017 Jan; 8(1):188-192. PubMed ID: 27973856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling between structural properties and charge transport in nano-crystalline and amorphous graphitic carbon films, deposited by electron-beam evaporation.
    Brus VV; Ilashchuk MI; Orletskyi IG; Solovan MM; Parkhomenko GP; Babichuk IS; Schopp N; Andrushchak GO; Mostovyi AI; Maryanchuk PD
    Nanotechnology; 2020 Dec; 31(50):505706. PubMed ID: 32924974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of Ni-Catalyzed Graphitization Process of Diamond by
    Romanyuk O; Varga M; Tulic S; Izak T; Jiricek P; Kromka A; Skakalova V; Rezek B
    J Phys Chem C Nanomater Interfaces; 2018 Mar; 122(12):6629-6636. PubMed ID: 30263086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seeded Growth of Ultrathin Carbon Films Directly onto Silicon Substrates.
    Yan Z; Joshi R; You Y; Poduval G; Stride JA
    ACS Omega; 2021 Apr; 6(13):8829-8836. PubMed ID: 33842754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphitization behaviour of chemically derived graphene sheets.
    Long D; Li W; Qiao W; Miyawaki J; Yoon SH; Mochida I; Ling L
    Nanoscale; 2011 Sep; 3(9):3652-6. PubMed ID: 21805004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote catalyzation for direct formation of graphene layers on oxides.
    Teng PY; Lu CC; Akiyama-Hasegawa K; Lin YC; Yeh CH; Suenaga K; Chiu PW
    Nano Lett; 2012 Mar; 12(3):1379-84. PubMed ID: 22332771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VO₂ Thermochromic Films on Quartz Glass Substrate Grown by RF-Plasma-Assisted Oxide Molecular Beam Epitaxy.
    Zhang D; Sun HJ; Wang MH; Miao LH; Liu HZ; Zhang YZ; Bian JM
    Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations on silicon/amorphous-carbon and silicon/nanocrystalline palladium/ amorphous-carbon interfaces.
    Roy M; Sengupta P; Tyagi AK; Kale GB
    J Nanosci Nanotechnol; 2008 Aug; 8(8):4295-302. PubMed ID: 19049221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methane Decomposition and Carbon Growth on Y
    Kogler M; Köck EM; Perfler L; Bielz T; Stöger-Pollach M; Hetaba W; Willinger M; Huang X; Schuster M; Klötzer B; Penner S
    Chem Mater; 2014 Feb; 26(4):1690-1701. PubMed ID: 24587591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Temperature Carbon Deposition on Oxide Surfaces by CO Disproportionation.
    Kogler M; Köck EM; Klötzer B; Schachinger T; Wallisch W; Henn R; Huck CW; Hejny C; Penner S
    J Phys Chem C Nanomater Interfaces; 2016 Jan; 120(3):1795-1807. PubMed ID: 26877828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined hydrogen production and storage with subsequent carbon crystallization.
    Lueking AD; Gutierrez HR; Fonseca DA; Narayanan DL; Van Essendelft D; Jain P; Clifford CE
    J Am Chem Soc; 2006 Jun; 128(24):7758-60. PubMed ID: 16771488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epitaxial graphene growth by carbon molecular beam epitaxy (CMBE).
    Park J; Mitchel WC; Grazulis L; Smith HE; Eyink KG; Boeckl JJ; Tomich DH; Pacley SD; Hoelscher JE
    Adv Mater; 2010 Oct; 22(37):4140-5. PubMed ID: 20730812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes.
    Steiner SA; Baumann TF; Bayer BC; Blume R; Worsley MA; MoberlyChan WJ; Shaw EL; Schlögl R; Hart AJ; Hofmann S; Wardle BL
    J Am Chem Soc; 2009 Sep; 131(34):12144-54. PubMed ID: 19663436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress Writing Textured Graphite Conducting Wires/Patterns in Insulating Amorphous Carbon Matrix as Interconnects.
    Wang DS; Chang SY; Chen TS; Chou TH; Huang YC; Wu JB; Leu MS; Lai HJ
    Sci Rep; 2017 Aug; 7(1):9727. PubMed ID: 28852077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization dynamics and interface stability of strontium titanate thin films on silicon.
    Hanzig F; Hanzig J; Mehner E; Richter C; Veselý J; Stöcker H; Abendroth B; Motylenko M; Klemm V; Novikov D; Meyer DC
    J Appl Crystallogr; 2015 Apr; 48(Pt 2):393-400. PubMed ID: 25844077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.