These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22029709)

  • 1. Root aeration via aerenchymatous phellem: three-dimensional micro-imaging and radial O2 profiles in Melilotus siculus.
    Verboven P; Pedersen O; Herremans E; Ho QT; Nicolaï BM; Colmer TD; Teakle N
    New Phytol; 2012 Jan; 193(2):420-31. PubMed ID: 22029709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerenchymatous phellem in hypocotyl and roots enables O2 transport in Melilotus siculus.
    Teakle NL; Armstrong J; Barrett-Lennard EG; Colmer TD
    New Phytol; 2011 Apr; 190(2):340-50. PubMed ID: 21299566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waterlogging tolerance, tissue nitrogen and oxygen transport in the forage legume Melilotus siculus: a comparison of nodulated and nitrate-fed plants.
    Konnerup D; Toro G; Pedersen O; Colmer TD
    Ann Bot; 2018 Mar; 121(4):699-709. PubMed ID: 29351575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tolerance to partial and complete submergence in the forage legume Melilotus siculus: an evaluation of 15 accessions for petiole hyponastic response and gas-filled spaces, leaf hydrophobicity and gas films, and root phellem.
    Striker GG; Kotula L; Colmer TD
    Ann Bot; 2019 Jan; 123(1):169-180. PubMed ID: 30124766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triterpenoids in aerenchymatous phellem contribute to internal root aeration and waterlogging adaptability in soybeans.
    Takahashi H; Abo C; Suzuki H; Romsuk J; Oi T; Yanagawa A; Gorai T; Tomisaki Y; Jitsui M; Shimamura S; Mori H; Kaga A; Ishimoto M; Seki H; Muranaka T; Nakazono M
    New Phytol; 2023 Aug; 239(3):936-948. PubMed ID: 37270736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring and interpreting respiratory critical oxygen pressures in roots.
    Armstrong W; Webb T; Darwent M; Beckett PM
    Ann Bot; 2009 Jan; 103(2):281-93. PubMed ID: 18819952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flooding tolerance of forage legumes.
    Striker GG; Colmer TD
    J Exp Bot; 2017 Apr; 68(8):1851-1872. PubMed ID: 27325893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aerenchymatous phellem of Lythrum salicaria (L.): a pathway for gas transport and its role in flood tolerance.
    Stevens KJ; Peterson RL; Reader RJ
    Ann Bot; 2002 May; 89(5):621-5. PubMed ID: 12099537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil.
    Shimamura S; Yamamoto R; Nakamura T; Shimada S; Komatsu S
    Ann Bot; 2010 Aug; 106(2):277-84. PubMed ID: 20660468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sucrose supply from leaves is required for aerenchymatous phellem formation in hypocotyl of soybean under waterlogged conditions.
    Takahashi H; Xiaohua Q; Shimamura S; Yanagawa A; Hiraga S; Nakazono M
    Ann Bot; 2018 Mar; 121(4):723-732. PubMed ID: 29370345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical Aerenchyma formation in hypocotyl and adventitious roots of Luffa cylindrica subjected to soil flooding.
    Shimamura S; Yoshida S; Mochizuki T
    Ann Bot; 2007 Dec; 100(7):1431-9. PubMed ID: 17921518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf gas films delay salt entry and enhance underwater photosynthesis and internal aeration of Melilotus siculus submerged in saline water.
    Teakle NL; Colmer TD; Pedersen O
    Plant Cell Environ; 2014 Oct; 37(10):2339-49. PubMed ID: 24393094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root-zone hypoxia reduces growth of the tropical forage grass Urochloa humidicola in high-nutrient but not low-nutrient conditions.
    Jiménez JC; Kotula L; Veneklaas EJ; Colmer TD
    Ann Bot; 2019 Nov; 124(6):1019-1032. PubMed ID: 31152584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of seminal and nodal roots of wheat in stagnant solution: K+ and P uptake and effects of increasing O2 partial pressures around the shoot on nodal root elongation.
    Wiengweera A; Greenway H
    J Exp Bot; 2004 Sep; 55(405):2121-9. PubMed ID: 15310817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen in the air and oxygen dissolved in the floodwater both sustain growth of aquatic adventitious roots in rice.
    Lin C; Ogorek LLP; Pedersen O; Sauter M
    J Exp Bot; 2021 Feb; 72(5):1879-1890. PubMed ID: 33206163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial versus complete submergence: snorkelling aids root aeration in Rumex palustris but not in R. acetosa.
    Herzog M; Pedersen O
    Plant Cell Environ; 2014 Oct; 37(10):2381-90. PubMed ID: 24450988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of radial oxygen loss in mangroves subjected to waterlogging.
    Cheng H; Wu ML; Li CD; Sun FL; Sun CC; Wang YS
    Ecotoxicology; 2020 Aug; 29(6):684-690. PubMed ID: 32394359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.).
    Colmer TD
    Ann Bot; 2003 Jan; 91 Spec No(2):301-9. PubMed ID: 12509350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Influences of Biochar Application on Root Aerenchyma and Radial Oxygen Loss of
    Huang L; Liang YK; Liang Y; Luo X; Chen YC
    Huan Jing Ke Xue; 2019 Mar; 40(3):1280-1286. PubMed ID: 31087975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in root aeration, iron plaque formation and waterlogging tolerance in six mangroves along a continues tidal gradient.
    Cheng H; Wang YS; Fei J; Jiang ZY; Ye ZH
    Ecotoxicology; 2015 Oct; 24(7-8):1659-67. PubMed ID: 25956983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.