These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22029738)

  • 1. Thermodynamic evidence for negative charge stabilization by a catalytic metal ion within an RNA active site.
    Sengupta RN; Herschlag D; Piccirilli JA
    ACS Chem Biol; 2012 Feb; 7(2):294-9. PubMed ID: 22029738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction.
    Shan S; Kravchuk AV; Piccirilli JA; Herschlag D
    Biochemistry; 2001 May; 40(17):5161-71. PubMed ID: 11318638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the cleavage site 2'-hydroxyl in the Tetrahymena group I ribozyme reaction.
    Yoshida A; Shan So; Herschlag D; Piccirilli JA
    Chem Biol; 2000 Feb; 7(2):85-96. PubMed ID: 10662698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional identification of catalytic metal ion binding sites within RNA.
    Hougland JL; Kravchuk AV; Herschlag D; Piccirilli JA
    PLoS Biol; 2005 Sep; 3(9):e277. PubMed ID: 16092891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three metal ions at the active site of the Tetrahymena group I ribozyme.
    Shan So; Yoshida A; Sun S; Piccirilli JA; Herschlag D
    Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12299-304. PubMed ID: 10535916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A second catalytic metal ion in group I ribozyme.
    Weinstein LB; Jones BC; Cosstick R; Cech TR
    Nature; 1997 Aug; 388(6644):805-8. PubMed ID: 9285596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissection of a metal-ion-mediated conformational change in Tetrahymena ribozyme catalysis.
    Shan SO; Herschlag D
    RNA; 2002 Jul; 8(7):861-72. PubMed ID: 12166641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of an active site ligand for a group I ribozyme catalytic metal ion.
    Szewczak AA; Kosek AB; Piccirilli JA; Strobel SA
    Biochemistry; 2002 Feb; 41(8):2516-25. PubMed ID: 11851398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the Tetrahymena group I ribozyme reaction in both directions.
    Karbstein K; Carroll KS; Herschlag D
    Biochemistry; 2002 Sep; 41(37):11171-83. PubMed ID: 12220182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tetrahymena ribozyme cleaves a 5'-methylene phosphonate monoester approximately 10(2)-fold faster than a normal phosphate diester: implications for enzyme catalysis of phosphoryl transfer reactions.
    Liao X; Anjaneyulu PS; Curley JF; Hsu M; Boehringer M; Caruthers MH; Piccirilli JA
    Biochemistry; 2001 Sep; 40(37):10911-26. PubMed ID: 11551186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaving group stabilization by metal ion coordination and hydrogen bond donation is an evolutionarily conserved feature of group I introns.
    Kuo LY; Piccirilli JA
    Biochim Biophys Acta; 2001 Dec; 1522(3):158-66. PubMed ID: 11779630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new metal ion interaction in the Tetrahymena ribozyme reaction revealed by double sulfur substitution.
    Yoshida A; Sun S; Piccirilli JA
    Nat Struct Biol; 1999 Apr; 6(4):318-21. PubMed ID: 10201397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site.
    Guo F; Gooding AR; Cech TR
    Mol Cell; 2004 Nov; 16(3):351-62. PubMed ID: 15525509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An active site rearrangement within the Tetrahymena group I ribozyme releases nonproductive interactions and allows formation of catalytic interactions.
    Sengupta RN; Van Schie SN; Giambaşu G; Dai Q; Yesselman JD; York D; Piccirilli JA; Herschlag D
    RNA; 2016 Jan; 22(1):32-48. PubMed ID: 26567314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of binding energy by an RNA enzyme for catalysis by positioning and substrate destabilization.
    Narlikar GJ; Gopalakrishnan V; McConnell TS; Usman N; Herschlag D
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3668-72. PubMed ID: 7731962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal ion catalysis in the Tetrahymena ribozyme reaction.
    Piccirilli JA; Vyle JS; Caruthers MH; Cech TR
    Nature; 1993 Jan; 361(6407):85-8. PubMed ID: 8421499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-metal ion mechanism operates in the hammerhead ribozyme-mediated cleavage of an RNA substrate.
    Lott WB; Pontius BW; von Hippel PH
    Proc Natl Acad Sci U S A; 1998 Jan; 95(2):542-7. PubMed ID: 9435228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Assembly of Catalytic Interactions within the Conserved Active Sites of Two Ribozymes.
    van Schie SN; Sengupta RN; Herschlag D
    PLoS One; 2016; 11(8):e0160457. PubMed ID: 27501145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of being ribose at the cleavage site in the Tetrahymena ribozyme reaction.
    Herschlag D; Eckstein F; Cech TR
    Biochemistry; 1993 Aug; 32(32):8312-21. PubMed ID: 7688573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.