BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 22029863)

  • 1. Anhydrous proton-conducting membrane based on poly-2-vinylpyridinium dihydrogenphosphate for electrochemical applications.
    Yang B; Manohar A; Prakash GK; Chen W; Narayanan SR
    J Phys Chem B; 2011 Dec; 115(49):14462-8. PubMed ID: 22029863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anhydrous proton-conducting polymeric electrolytes for fuel cells.
    Narayanan SR; Yen SP; Liu L; Greenbaum SG
    J Phys Chem B; 2006 Mar; 110(9):3942-8. PubMed ID: 16509680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heteropolyacid-encapsulated self-assembled materials for anhydrous proton-conducting electrolytes.
    Yamada M; Honma I
    J Phys Chem B; 2006 Oct; 110(41):20486-90. PubMed ID: 17034234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonhumidified intermediate temperature fuel cells using protic ionic liquids.
    Lee SY; Ogawa A; Kanno M; Nakamoto H; Yasuda T; Watanabe M
    J Am Chem Soc; 2010 Jul; 132(28):9764-73. PubMed ID: 20578771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomembranes for fuel cell electrolytes employing anhydrous proton conducting uracil composites.
    Yamada M; Honma I
    Biosens Bioelectron; 2006 May; 21(11):2064-9. PubMed ID: 16530401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid acids as fuel cell electrolytes.
    Haile SM; Boysen DA; Chisholm CR; Merle RB
    Nature; 2001 Apr; 410(6831):910-3. PubMed ID: 11309611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-relaxation interplay of a new nanostructured membrane based on tetraethylammonium trifluoromethanesulfonate ionic liquid and neutralized nafion 117 for high-temperature fuel cells.
    Di Noto V; Negro E; Sanchez JY; Iojoiu C
    J Am Chem Soc; 2010 Feb; 132(7):2183-95. PubMed ID: 20102239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs.
    Fernicola A; Panero S; Scrosati B; Tamada M; Ohno H
    Chemphyschem; 2007 May; 8(7):1103-7. PubMed ID: 17393375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial interactions in aprotic ionic liquid based protonic membrane and its correlation with high temperature conductivity and thermal properties.
    Mistry MK; Subianto S; Choudhury NR; Dutta NK
    Langmuir; 2009 Aug; 25(16):9240-51. PubMed ID: 19583225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic-liquid-based proton conducting membranes for anhydrous H2/Cl2 fuel-cell applications.
    Liu S; Zhou L; Wang P; Zhang F; Yu S; Shao Z; Yi B
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3195-200. PubMed ID: 24490850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anhydrous proton conducting materials based on sulfonated dimethylphenethylchlorosilane grafted mesoporous silica/ionic liquid composite.
    Amiinu IS; Liang X; Tu Z; Zhang H; Feng J; Wan Z; Pan M
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11535-43. PubMed ID: 24215166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton transport in choline dihydrogen phosphate/H(3)PO(4) mixtures.
    Rana UA; Bayley PM; Vijayaraghavan R; Howlett P; Macfarlane DR; Forsyth M
    Phys Chem Chem Phys; 2010 Oct; 12(37):11291-8. PubMed ID: 20680198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composite polymer electrolyte containing ionic liquid and functionalized polyhedral oligomeric silsesquioxanes for anhydrous PEM applications.
    Subianto S; Mistry MK; Choudhury NR; Dutta NK; Knott R
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1173-82. PubMed ID: 20355910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications.
    Miyatake K; Chikashige Y; Higuchi E; Watanabe M
    J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications.
    Asano N; Aoki M; Suzuki S; Miyatake K; Uchida H; Watanabe M
    J Am Chem Soc; 2006 Feb; 128(5):1762-9. PubMed ID: 16448153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New anhydrous proton exchange membrane for intermediate temperature proton exchange membrane fuel cells.
    Sun B; Song H; Qiu X; Zhu W
    Chemphyschem; 2011 Apr; 12(6):1196-201. PubMed ID: 21472959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promotion of proton conduction in polymer electrolyte membranes by 1H-1,2,3-triazole.
    Zhou Z; Li S; Zhang Y; Liu M; Li W
    J Am Chem Soc; 2005 Aug; 127(31):10824-5. PubMed ID: 16076176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative polymer nanocomposite electrolytes: nanoscale manipulation of ion channels by functionalized graphenes.
    Choi BG; Hong J; Park YC; Jung DH; Hong WH; Hammond PT; Park H
    ACS Nano; 2011 Jun; 5(6):5167-74. PubMed ID: 21534602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing advanced alkaline polymer electrolytes for fuel cell applications.
    Pan J; Chen C; Zhuang L; Lu J
    Acc Chem Res; 2012 Mar; 45(3):473-81. PubMed ID: 22075175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-linked poly(vinyl alcohol)-poly(acrylonitrile-co-2-dimethylamino ethylmethacrylate) based anion-exchange membranes in aqueous media.
    Kumar M; Singh S; Shahi VK
    J Phys Chem B; 2010 Jan; 114(1):198-206. PubMed ID: 19938844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.