These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22029954)

  • 1. High quality potassium phosphate production through step-by-step glycerol purification: a strategy to economize biodiesel production.
    Javani A; Hasheminejad M; Tahvildari K; Tabatabaei M
    Bioresour Technol; 2012 Jan; 104():788-90. PubMed ID: 22029954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceleration of biodiesel-glycerol decantation through NaCl-assisted gravitational settling: a strategy to economize biodiesel production.
    Shirazi MM; Kargari A; Tabatabaei M; Mostafaeid B; Akia M; Barkhi M; Shirazi MJ
    Bioresour Technol; 2013 Apr; 134():401-6. PubMed ID: 23499494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel.
    Thanh le T; Okitsu K; Sadanaga Y; Takenaka N; Maeda Y; Bandow H
    Bioresour Technol; 2010 Jul; 101(14):5394-401. PubMed ID: 20219362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upstream and downstream strategies to economize biodiesel production.
    Hasheminejad M; Tabatabaei M; Mansourpanah Y; Khatami far M; Javani A
    Bioresour Technol; 2011 Jan; 102(2):461-8. PubMed ID: 20974530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical and biological conversion of crude glycerol derived from waste cooking oil to biodiesel.
    Chen J; Yan S; Zhang X; Tyagi RD; Surampalli RY; Valéro JR
    Waste Manag; 2018 Jan; 71():164-175. PubMed ID: 29097125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of organic impurities in waste glycerol from biodiesel production process through the acidification and coagulation processes.
    Xie QG; Taweepreda W; Musikavong C; Suksaroj C
    Water Sci Technol; 2012; 65(7):1158-63. PubMed ID: 22437011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes.
    Chatzifragkou A; Papanikolaou S
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):13-27. PubMed ID: 22581036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipase catalysed biodiesel synthesis with integrated glycerol separation in continuously operated microchips connected in series.
    Šalić A; Tušek AJ; Sander A; Zelić B
    N Biotechnol; 2018 Dec; 47():80-88. PubMed ID: 29421610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Value-added processing of crude glycerol into chemicals and polymers.
    Luo X; Ge X; Cui S; Li Y
    Bioresour Technol; 2016 Sep; 215():144-154. PubMed ID: 27004448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013.
    Venkataramanan KP; Boatman JJ; Kurniawan Y; Taconi KA; Bothun GD; Scholz C
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1325-35. PubMed ID: 22202963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of glycerol phase formed by biodiesel production.
    Hájek M; Skopal F
    Bioresour Technol; 2010 May; 101(9):3242-5. PubMed ID: 20074939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Step Purification of Glycerol as a Value Added by Product From the Biodiesel Production Process.
    Abdul Raman AA; Tan HW; Buthiyappan A
    Front Chem; 2019; 7():774. PubMed ID: 31799239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zeolitic Core@Shell Adsorbents for the Selective Removal of Free Glycerol from Crude Biodiesel.
    Masoumifard N; Arnal PM; Kaliaguine S; Kleitz F
    ChemSusChem; 2015 Jun; 8(12):2093-105. PubMed ID: 26059701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of operating costs for producing biodiesel from palm oil at pilot-scale in Colombia.
    Acevedo JC; Hernández JA; Valdés CF; Khanal SK
    Bioresour Technol; 2015; 188():117-23. PubMed ID: 25660089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotechnological processes for biodiesel production using alternative oils.
    Azócar L; Ciudad G; Heipieper HJ; Navia R
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):621-36. PubMed ID: 20697706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Value-added conversion of waste cooking oil and post-consumer PET bottles into biodiesel and polyurethane foams.
    Dang Y; Luo X; Wang F; Li Y
    Waste Manag; 2016 Jun; 52():360-6. PubMed ID: 27055365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous biodiesel production using in situ glycerol separation by membrane bioreactor system.
    Ko MJ; Park HJ; Hong SY; Yoo YJ
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):69-75. PubMed ID: 21918839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental impacts of valorisation of crude glycerol from biodiesel production - A life cycle perspective.
    Tomatis M; Kumar Jeswani H; Azapagic A
    Waste Manag; 2024 Apr; 179():55-65. PubMed ID: 38460477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic production of biodiesel from waste cooking oil in a packed-bed reactor: an engineering approach to separation of hydrophilic impurities.
    Hama S; Yoshida A; Tamadani N; Noda H; Kondo A
    Bioresour Technol; 2013 May; 135():417-21. PubMed ID: 22795609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycerol extracting dealcoholization for the biodiesel separation process.
    Ye J; Sha Y; Zhang Y; Yuan Y; Wu H
    Bioresour Technol; 2011 Apr; 102(7):4759-65. PubMed ID: 21296572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.